Add the power of speech to your Apple
without hardware. A combination of Apple-
soft and machine language programming
makes it possibie to build a disk library of
sounds or words and to combine them in
novel ways.

by Mike Eve
15621 S.E. 178th St.
Renton, WA 98055

Computerized speech is becoming more
aveilable for home computers. Speech
boards for the Apple are now available in
the $200 range. APPLE TALKER is the
software alternative which allows you to
add speech (and other complex sounds) to
your programs without purchasing more
hardware.

APPLE TALKER turns your Apple into a
digital recorder. Sounds and words prere-
corded on tape are introduced into the
Apple via the cassette input, sampled, and
stored in memory. Once in memory, the
sounds may be transferred to disk, com-
bined with other sounds, and replayed.

THEORY

Just as programs can be stored in mem-
oryas a series of 0's and 1's, so can sound.
By sampling sound at a fixed rate and then
playing the samples back at the same rate,
the sound can be reconstructed. Thz sound
fidelity can he made as good as desired by
increasing the sample rate and the meas-
urement accuracy. By taking very good
samples, very fast, itis possible to produce
a digital recording that is indistinguishable
from the original.

This is the principle behind digital audio
which is just now becoming available for
the home. These new systems use 40 to 50
thousand samples, of 12 to 16 bits each,
every second. APPLE TALKER will make
7300 1-bit samples per second. This rate
and resolution are adequate to produce
recognizable voice, although quite a bit of
distortion is introduced. APPLE TALKER
works best with short, common words.

ENTERING APPLE TALKER

APPLE TALKER consists of an Aoplesoft
main routine which calls the assembly lan-
guage routine for the time-critical tasks.

First, enter Applesoft and type in the
main routine. Save it on disk under the
name APPLE TALKER.

Next, enter the machine code directly
into memory, or assemble the source. Use
BSAVE APPLE TALKER.OBJ,A$300,LSCE
to save your work to disk.

RUNNING APPLE TALKER

Connect your tape recorder to the cas-
sette input port of your Apple. You need
not connect the output port. Next, record
some sounds on tape. To experiment with
the features of APPLE TALKER, | suggest
you record yourself counting from 1 to 5.
Count slowly and clearly.

Now, RUN APPLE TALKER. The menu
will appear along with a buffer status at the
bottom of the screen. There are eight menu
choices (FIGURE 1). As you step through
the various options, the name of the cur-
rently selected option will appear below the
menu. As you fill memory with your
sounds, the pointers P1 and P2 in the
status line will indicate your working
buffer. The minimum and maximum values
of P1 and P2 are given for reference.

Type "1’ to enter the echo routine, and
begin playing your cassette. As the cas-
sette plays, your voice is sampled every 137
milliseconds. This sample is fed back to
your Apple speaker. What you are hearing
is exactly what your digital recording will
sound like. You can control the quality
somewhat by adjusting the volume control
on the cassette. Adjust the volume for best
response, press any key to quit echoing,
and rewind your cassette.

Iype "2’ to enter the record routine. Play
your cassette. It will be echoed until you
press a key to begin recording. This gives
you some additioral control over the re-
cording process. The routine will record
the first five seconds of your monologue.
Note that P2 has changed to point to the
end of your recording. You are ncw done
with the cassette.

Type ‘3’ to play what you have recorded.
Do not press keys 1 or 2 at this time. You
will hear everything in the buffer from P1to
P2.

Typc '4’ to save your recording on disk.
This will become the master you use
for editing. The recording will be saved
under the name you give with “.SOUND"
appended.

BUILDING A LIBRARY
Now that you have created a master
recording, you can go back and create a
library of words. In option 3 (play). keys 1
and 2 can be used to adjust the buffer point-
continued on page 75

ers to isolate words. Each word can be
seved in its own disk file, and then com-
bined with other words to form new
phrases. After isolating and saving a word,
option 6 can be used to restore P1 and P2
tothe values they had before you used the
1and 2 keys. You can then isolate another
word in the master recording.

It you need even finer control of P1 and
P2 than provided by the play option, you
can invoke option 7 to specify values for P1
and P2, You can also adjust the default
recording time, and vary the sampling rate.
Tte minimum time between samples is 87
microseconds. Additional delay can be
added in 5§ microsecond increments. The
additional delay is defaulted to 50 micro-
seconds for a total delay of 137 microsec-
onds between samples. Unusual effects
ca1 be achieved by sampling at one rate
and replaying at another.

After building a library, you can form
new phrases using option 5 to load in the
different words. Option 5 allows you to
eitner load a word at the beginning of the
buffer, or to append to the words already in
plece.

“o exit the program, use option 8. This
will restore HIMEM to its original value. If
the program should crash for any reason,
reboot the system to restore HIMEM.

HOW THE PROGRAM WORKS

“he main routine BLOADS the assembly
larguage routincs into page 3. This page is
not used by Applesoft or DOS, and keeps
the routines out of the way. The main
routine also resets HIMEM to make room
for the sound buffer. HIMEM is set to a
muitiple of a thousand so that the program
has at least a thousand bytes of memory
available for variable and string storage.
The sound buffer extends from the new
HIMEM to the old HIMEM. The old HIMEM
is restored when the program ends

“he assembly language routines are the
most important part of APPLE TALKER.
These routines have been carefully con-
structed so that each loop takes exactly the
same amount of time, even though the loop
does not always execute the same instruc-
tions.

For example, the input loop must read a
bit, rotate it into the accumulator via the
carry, and, if thc accumulator is full (eight
samples/byte), store it in the buffer. If the
accumulator is not full, the address calcu-

laton is skipped. To maintain a constant
loop time, a wait loop had to be added.

The output loop is similar to the input
loop except that the program must com-
pare the old sample to the new sample. If
the samples are different, then the speaker
is nudged; otherwise, the speaker is left
alone. These two different actions required
another delay loop to equalize processing
time.

The echoc routine is the simplest of the
three sound routines, and has only one
main processing path
e R)

“If the samples are different,
then the speaker is nudged...”
T T E— Y e

All the sound routines possess a “uni-
versal delay"” loop. This loop was edded so
that the sample interval of all the routines
can be changed by modifying only one,
common parameter.

One note on program structure. As
APPLE TALKER evolved, the assembly
language routines moved and so did their
entry points. This required editing the main
routine to correct the CALL statements. |
decided to place JMPs to each rcutine in
the beginning. Now the CALLs ooint to
these indirect entry points, and changes
can be made to the assembly portion with-
out affecting the main routine.

MODIFYING APPLE TALKER

You may wish to improve APPLE
TA_KER by increasing the sample rate. Itis
possible to decrease the sample time to 35-
40 microseconds by replacing the JSRs
with in-line code. This will give you a
whopping 25,000 samples/second (about
3K bytes/second); however, be forewarned
that APPLE TALKER's limiting factor for
speech is not the sample rate, but the sam-
ple resolution. With only one bit/sample,
the added samples will not be wortawhile.

The assembly language portion of APPLE
TALKER may be easily incorporated into
yoLr own programs. Simply have the main
routine BLOAD the assembly routines,
allocate and load a sound buffer, and
POKE the buffer pointers into locations 6-
9. Liberal use of disk files is indicated to
conserve memory.

In closing, as APPLE TALKER would say,
“Have fun!”

APPLE TALKER

1) ECHO

2) RECORD

3) PLAY

4) SAVE

5) LOAD o

6) RESTORE POINTERS
7) SET POINTERS

8) QUIT

COMMAND ?

MIN 7000 MAX 38400 P1 7000 P2 7000
FIGURE 1 THE APPLE TALKER MENU

LISTING 1:

REM **xXkXsxskkxarrrrranrars

APPLE TALKER

1
. ED. RAM DISK., PAC ana APPLE
:23 2%: : gsPL51<E~L252 : TALKER are available on diskelte for an
2 introductory price of $1995 pius $150
4 REM » COPYRIGHT (C» 1983 » shipping/handling ($2.50 outside the U S.)
S REM » BY MICROSPARC, INC =» fram NIBBLE. P.O. Box 325 Lincoln, MA
4 REM = LINCOLN, MA, 81773 * 01773 Offes expires 2/29/84.
7 REM 3as s s assrssrsesdsess
20 PRINT CHR$ (4);"BLOAD APPLE TALKER.OBJ": REM L
0AD AT $3080
38 REM INITIALIZATION
48 DEF FN PK(X> = PEEK (X) + 256 * PEEK (X + 1)
S8 ONERR GOTC 1210
48 M2 = FN PK(115): REM GET HIMEM
786 M1 = FN PK«185): REM TOP 0OF PROGRAM
88 M1 = (2 4+ INT (Ml / 1@8@8)) * 1086: REM 1866<CVARIA
BLE STORAGE<2008
P Pl = Mi:P2 = Pl: REM BUFFER FTRS
188 01 = P1:02 = P2
118 Tw = 5
120 7D = 11: POKE 786, INT (TD>: REM COMMON DELAY
1386 HIMEM: Ml: REM SET NEW HIMEM
148 BS = 1 / (B # (S # (TD - 1) + 87) % |E - 4): REM B
YTES/SECOND
15 S$ = ".SOUND": REM SAVE FILE SUFFIX
1686 REM DEFINE MENU ITEMS
17€ C$(1) = "ECHC"
188 C$(2) = "RECORD"
196 C$(3) = "PLAY"
20€ C$(4) = "SAVE"
218 C$(5) = “LOAD"
22¢ C$(4) = "RESTORE POINTERS"
236 C#$(7) = "SET POINTERS"
24e¢ Cs(B) = "QUIT"
250 M. = A
268 REM DISPLAY SCREEN
276 HOME PRINT "x%% COPYRIGHT 1983 BY MICROSPARC, IN
C. #x": PRINT TAB(13)3"APPLE TALKER": PRINT
288 FOR I = 1 T0 MC: PRINT TABC 18);1;") ";C8(1): NEXT
1
298 GOSUB 1158: REM FPRINT STATUS
360 UVUTAB MC + S: HTAB 18
318 INPUT "COMMAND ?"3C: IF C < { OR C > MC THEN 248
328 HTAB 18: [INVERSE : PRINI : PRINI U$S(L)>: NURMAL : PRINT
338 ON C GOSUB 350,390,470,4640,700,8208,850,18590
340 GOTO 248
356 REM ECHO
360 PRINT "HIT ANY KEY TO STOF"
376 CALL 774
380 RETURN
396 REM RECORD
400 P1 = MI1:P2 = P!l + TW = RS - |\
416 GOSUB 10898: CALL 777: REM ZERO BUFFER
426 GOSUB 1898: REM SETUP
438 PRINT *"HIT ANY KEY TO BEGIN"
440 CALL 774: REM ECHO TILL KEY
458 CALL 748: REM RECORD
448 RETURN
479 REM PLAYBACK
488 PRINT "USE KEYS | AND 2 TO EDIT": PRINT "ANY OTHE
R 10 EXIT™
498 GOSUB 1890: REM SETUP
583 CALL 771: REM PLAY
518 KY = PEEK (25): REM READ KEY
S28 IF KY = 8 THEN RETURN : REM NO KEY
533 KY = KY — 128 - ASC ("@")
S48 IF KY = | THEN GOTO S78
5538 IF KY = 2 THEN GOTO 420
548 RETURN
576 IF P2 < FN PK(é) THEN 586: REM P! MUST BE > P2
582 0! = P1:P1 = FN PK(&): REM SAVE BEGIN
598 GOSUB 1158: REM PRINT STATUS
483 GOSUB 1138: REM PAUSE
418 GOTO 588: REM PLAY MORE
420 02 = P2:P2 = FN PK(&>: REM SAVE END
4380 GOSUB 1158: REM PRINT STATUS
648 GOSUB 113@: REM PAUSE
608 LUIU LDYu
668 REM SAVE
&78 INPUT "FILENAME ? “;F$
680 PRINT CHR$ (4)"BSAVE"F$53",A" INT (P1)>:",L"; INT
(P2 - P1)
4698 RETURN
708 REM LOAD
718 IF P2 = M! THEN 778: REM DD NOTHING
7za INPUT "APPEND 2(Y/N)";As
738 IF A% < > "Y" AND A% < > "N THEN 728
748 IF A% = "Y" THEN 77¢
758 P1 = M1:P2 = M2: GOSUB 1898: CALL 777:P2 = P1: REM
ZERO BUFFER
768 GOSUB 1150: GOTO 780: REM PRINT STATUS
778 01 = P1:Pl = P2:P2 = M2: GOSUE 1898: CALL 777:P2 =

P1:Py = Ol: REM ZERO REMAINING BUFFER

788
ke’
3609

819
828
836
84¢e
a5
846
876
386
896

780
?1a
928
?36

946
25
968
P78
288

P58

1608
1e1e
182a

1020
1848
1e5e
10686
1078
1880
1850
1100

1118

1128
1130
114a
1156
1148
1176
1100

1190
12090
1218
1226
1230
1248
1250
1248
1270
1280
1290
1360
131@

1326

CALL - 848: INPUT
(4)"BLOAD"F$Ss" ,A"
Pz = P2 + FN PK(
BLOAD
IF P2 > MZ THEN PRINT
EM": PRINT "PLEASE REBOOT":
RETURN
REM RESET P! AND PZ
Pl = 01:P2 = 02
RETURN
REM
PRINT
PRINT
INPUT
T1 = VAL
Pii= T2
GOTC 840
FRINT "P2=": INT (P2);
INPLT = "3A$: IF LEN (A%> = 8 THEN 958
T2 = VAL (A%$,: IF T2 < = M2 AND T2 > = Pl THEN
P2 = T2: GOTO $58: REM ACCEPT IF IN RANGE
GOTC 9180
TL =5 # (TD - 1) + 87: REM COMPUTE DELAY TIME
PRINT "SAMPLE INTERVAL=": INT (T1);
INPUT "1A%: |IF LEN (A%$) = 8 THEN GOTO tees
T2 = “Ad): IF T2 ¢ 87 OR T2 > 343 THEN GO™C
750 343=206+87(MAX DELAY THAT KIS IN UNE B
YTE>
TD = INT «(T2 - 87) / S» + 1: POKE 786, INT (TD):
BS =1/ (B * (5 % (TD - 1) + 87) * LE - &)
PRINT "TIME WINDCW="; INT (TW);
INFUT * "j;A®: IF LEN (A$) = @ THEN GOTO 1646
T3 = VAL (A$>: IF T3 > @ AND M1 ¢« BS * T3 < M2 THEN
TW = T3: GOTO 10648
GOTC leee
RETURN
REM QUIT
GOsSUB 1308:
HOME
END
REM SETUP P1 AND P2
POKE 7, INT (P1 / 256é):
INT (P1 / 258))
POKE 9, INT (P2 / 256):
INT (P2 / 25&))
RETURN
REM PAUSE
FOR I = 1 TO 2808: NEXT I:
REM PRINT STATUS
CV = PEEK (37): REM SAVE CURSOR
UTAB 22: CALL - 848: REM CLEAR LINE
VTAB 22: INVERSE : PRINT “MIN "3 INT (M1);3" MAX
3 INT (M2);" PL "5 INT (Pl)>3" P2 " INT (P2): NORMAL
UTAB CU: REM RESTORE CURSOR
RETURN
REM

"FILENAME 2 "iF#:
INT (P2)
- 2192@>:

PRINT CHRe$

REM CALCULATE END OF
"ERROR:BLOAD WENT PAST HIM
END

SET PARAMETERS
"ENTER MEW “alLUE OR RETURN IF NO CHANGE"
PRINT "Pi="; INT (Pl>:

"iA%: IF LEN (A%$) = @ THEN 91€

Ad>: IF Tt > = M1I AND T! ¢ = M2 THEN
GOTO 218: REM ACCEPT IF IN RANGE

VAL
REM

REM RESET HIMEM

POKE &, INT (P1 - 256 %

POKE 8, INT (P2 - 256 =

RETURN

ROW

ERROR
ER = PEEK (222)

PRINT "ERROR # " jER

POKE 214,08

PRINT "RESTARTING PROGRAM®

GOSUB 1388: REM RESTORE HIMEM

CLEAR : REM RESET SUBROUTINE STACK,ETC
FOR 1 = | TO 26@6: NEXT 1: REM PAUSE
GOTO 38

REM RESET HIMEM

POKE 116, INT (M2 / 254):
116

RETURN

POKE 115,<(M2 - 256 * PEEK

KEY PERFECT 4.0
RUN ON
APPLE TALKER

$¥5 8 o SRS
TOTAL PRAGRAM CHECK, IS %

‘CODE LINES — LINE#

BF A S S 30
78F3 56 ~ - 140
5868 240
7089 340
47F7 439
S63C 540
‘SAAS &40
_4CBD 746
9B2C 849
7€87 Q49
9Nty .- 1946
4DF8 - 1148
.5BF2 . 1249

7 1258 = 1328
vCcac

CHECK CODE 3.¢

ON: ARPLE TALKER
TYRE: - A

LENGTH: . @AAC
CHEEKSUM: 76

LISTING 2: APPLE TALKER. OBJ

:ASM

1 * APPLE TALKER
2 * ML ROUTINES

3 * BY MIKE EVE

4 * COPYRIGHT (C) 1983
5 * MICROSPARC, INC.
3

7 PiL EQU $é

38 P1H EQU PiL+t

9 P2L EQU PILH+t

1@ P2H EQU P2L+1

11 KEYSAY EQU $19

12 KEYIN EQU sCge@8
13 KEYSTR EQU e¢Cele
14 TAPEIN EQU $C840

1S SPKR EQU +Ce3e

16

17 ORG $308

18

19 ¥ CONSTANT ENTRY POINTS

28
83@8: 4C @D 83 21 JMP INPUT
8383: 4C 3B B3 22 JMP OUTPUT
8384: 4C 91 83 23 JMP ECHO
B30Y: 4C Cl1 B3 24 JMP ZERO
e38C: @B 25 DELAY DFB %88

26

27 * INPUT ROUTINE

28
038D: A% 9@ 22 INPUT LDA #Hsge
P38F: A8 @8 38 LDY #$08
0311: A2 @0 31 LDX #s8@
@213: AE OC @3 32 INLOOP LDX DELAY
8316: CA 33 INDLY DEX
8317: D8 FD 34 BNE INDLY
9319: 48 35 PHA
831A: AD 48 CB 36 LDA TAPEIN
831D0: 2A 37 ROL
@31E: 68 38 PLA
B31F: 2A 39 ROL
8320: 88 48 DEY
8321: D8 10 a1 BNE DELAYL
8323: 81 8¢ 42 STA (P1L,X)
9325: 28 7F @3 42 JSR NXTP1
8328: BO 10 44 BCS INRTS
832A: AB 88 as LDY #ag
832C: A2 82 46 LDX #e2
B32E: CA 47 INDX DEX
832F: D8 FO 48 BNE INDXx
©321: Fe EO© a9 BEQ INLOO=
8333: A2 OB 58 DELAYL LDX HW$eB
8335: CA St INDXZ DEX
8336: D8 FD 52 BNE INOX2
8338: Fa D9 53 BEQ INLOO®
833A: 68 54 INRTS RTS

1)

S5é # QUTPUT ROUTINE

§7
©33B: A2 80 S8 QUTPUT LDX #s88
833D: BE CD 83 59 STX OLD
8348: 86 19 -1 STX KEYSAV
8342: Al 86 é1 LbA (PIL,X)
9344: A 99 62 LDY #s@9
8346: AE BC B3 43 OUTLOJP LDX DELAY
8349: CA 44 ouTDLY DEX
@34A: DO FD 65 BNE OUTDLY
834C: 8e &8 DEY
834D: D@ eB &7 BNE WAIT1
834F: 20 7F 83 48 JSR NXTP!
8352: B@ 2A 49 BCS OUTRTS
8354: Al @6 ’ae LoA (PIL,X)
8356: A8 08 71 LDY #$88
8358: 9@ ecC 72 BCC CMPBIT
835A: AE @08 CB 73 WAIT1 LDX KEYIN
835D: 18 82 74 BPL WAIT2
835F: 38 18 7S BMI OUTKEY
8361: A2 88 7é wAIT2 LDX #s@B
8343: CA &4 ouUTDX DEX
B8344: DO FD 78 BNE OUTDX
8366: 48 79 CMPBIT PHA
8347: 4D CD 83 8@ EOR OLD
834A: 10 oB 81 BPL QUIET
834C: AD 38 CO 82 LDA SPKR
B34F: &8 83 NXTBIT PLA
8376: 8D CD 83 84 STA OLD
8373: 2A 85 ROL
8374: 4C 46 83 86 JMP QUTLOOP
8377: 18 Fé 87 QUIET BPL NXTBIT
08379: 86 19 88 OUTKEY STX KEYSaU
8378: AE 18 C8 89 LDX KEYSTR
@37E: &8 98 OUTRTS RTS

jADDITIONAL DELAY DEFAULT

;ZERO SAMPLE SAVE
;Y 1S BIT COUNTER
;FOR INDIRECT ADDR
1UNIUVERSAL DELAY LOOP

$SAVE CURRENT BITS
;GET NEW BIT

;BIT TO CARRY
$RECALL CURRENT
;APPEND NEW 81T
sONE LESS BIT
;FULL BYTE?

3YES. SAVE 1T,
;ADDRESS NEXT BYTE
sRETURN [F DONE.
$RESET BIT COUNTER
;DELAY COUNTER
;DELAY LOOP

3ALWAYS BRANCH
sALTERNATE DELAY

JALWAYS BRANCH

;ASSUME OLD=ZERO

iNO KEY YET
{GET FIRST BYTE

}BIT COUNTER
JUNIVERSAL DELAY LOGP

7ONE LESS BIT
;BRANCH iF MORE BITS
jGET NEXT ADDRESS
{EXIT 1F DONE

;6ET NEXT BYTE
;RESET BIT COUNTER
;ALWAYS BRANCH
;KEY PRESSED?

$IF NO. BRANCH

;1F S0, EXIT
;DELAY

$SAVE CURRENT BITS
3COMPARE TO OLD
sSIGN BIT IMPORTANT
3NOT SAME,HIT SPKR
;RECALL CURRENT
3SAVE AS OLD

sNEXT BIT TO SIGN

3DELAY ,ALWAYS BRANCH
$SAVE KEY
3CLEAR STROBE

21
9?2 * NXTP1 ROUTINE
?3 *
94 * BRANCHES .
?5
B37F: AS 86 96 NXTPt DA PIL
8381: CS @8 ?7 cMP P2L
8383: AS 07 ?8 DA PIH
8385: ES @9 99 SBC P2H
8387: ES 06 100 INC PIL
8389: D8 @3 181 BNE NXTRTS
938B: ES 07 182 INC PIH
838D: 60 183 RTS
B838E: EA 184 NXTRTS NOP
838F: EA 185 NOP
83%90: &8 186 RTS
187
188 % ECHO ROUTINE
189
83%91: AP 88 116 ECHO LDA Ws@@
8393: 8D CD @3 111 5TA OLD
8396: AE 8C 83 112 ELOOP LDX DELAY
8399: CA 113 ECHODLY DEX
83%A: D8 FD 114 BNE ECHODLY
839C: AD 48 CO 115 DA TAPEIN
@3%F: 4D CD @3 116 ECR OLD
83A2: 39 B3 117 BMI EOUTPT
83A4: EA 1i8 NOP
83A5: 16 83 119 BPL SAVE
B3A7: AE 30 C6 128 EOUTPT LDX SPKR
B3AA: 4D CD 83 121 SAVE EOR OLD
83AD: 80 CD 83 122 STA OLD
8388: AD 98 CB 123 LDA KEYIN
03B3: 10 @4 124 BPL ECHODX
@3BS: an 14 rA 125 LDA KEYSTR
BEB8: 40 126 RTS
83B?: AZ B9 127 ECHODX LDX W$89
83BB: CA 128 DX DEX
@3BC: D@ FD 129 BNE DX
@3BE: 4C 96 83 130 JMP ELOOP
131
132 « 2ERO FROM P1 TO P2
133
134 ZEROD LDY Haa@
135 ZL0OOF LOA H$89
136 STA (PIL),Y
137 JSR NXTP1
138 BCC ZLOOP
139 RTS
148
141 OLD"~ DS 1

--End assembly--
206 bytes

Errors: @

REPLACES NXTP1 WITH EQUAL TIME

;UNIVERSAL DELAY LOOP

JALWAYS BRANCH

“KEY PERFECT 4.9

| APPLE TALKER.OB3.

‘CODE *.*.*, ‘ADDRA -~ ADDRH

2C3C .. " 8306 — O34F
2920 ... B350 — O
160D .~ BIAG — FSCD

. TOTAL PROBRAM CHECK IS @ CE
: | CHECK CODE 3.8
ON: -APPLE TALKER.OBJ -
TYPE: B

LENGTH: * 98CE
CHECKSUM: AC

B37F: AS
8381: CS
8383: AS
8385: ES
8387: ES
8389: D@
238B: ES
838D: 690
B38E: EA
B38F: EA
03908: &8

83%91: AP
8393: 8D
8396: AE
8399: CA
83%A: D8
839C: AD
B3%F: 4D
83AZ2: 39
83A4: EA
83A5: 1@
B3A7: AE
B3AA: 4D
B3AD: 8D
8388: AD
83B3: 10
83BS: AD
BZB8: 40
83BY?: AZ
83BB: CA
@3BC: De
@3BE: 4C

8é
e8
ez
o9
(2]

e7

03
83

ce
a3

ce
83
83
ce

83

110
111

112
113
114
115
116
117
118
119
126
121

122
123
124
1725
126
127
128
129
130
131

* NXTP1 ROUTINE
* REPLACES NXTP1 WITH EQUAL TIME

* BRANCHES.

NXTP1 LDA
P
DA
SBC
INC
BNE
INC
RTS
NXTRTS NOP
NOP
RTS

PiL
P2L
PiH
P2H
PIL
NXTRTS
PiH

* ECHO ROUTINE

ECHO LDA
5TA
ELOOP LDX
ECHODLY DEX
BNE
DA
ECR
BMI
NOP
BPL
EQUTPT LDX
SAVE EOR
STA
LDA
BPL
LDA
RTS
ECHODDX LOX
DX DEX
BNE
JMP

W00
oLD
DELAY

ECHODLY
TAPEIN
oLD
EQUTPT

SAVE
SPKR
oLD
oLD
KEYIN
ECHODX
KEYSTR

LEY- R

DX
ELOOP

sUNIVERSAL DELAY LOOP

;ALWAYS BRANCH

03C1: A8
83C3: AY
83CS; i
83C7: 20
B2CA: 78
A3rC: 48

ae
88
Bs
7F 83
F7

132 « ZERO FROM P1 TO P2
133

124 ZERD LDY Haa@

135 ZLOOF LOA W89
136 STA (PIL)>,Y
1:37: JSR NXTP1
138 BCC ZLOOP
139 RTS

148

14t OLD~ DS 1

--End assembly--

206 bytes

Errors: @

(3 x5 s a0 v 6D
[+ YOTRL CRDRM O 1o 7,
Lt CHECK £ODE 3.8

B350 — B3

ON: ‘APPLE TALKER.OBJ -
TYPE:*B X 50
LENGTH: * 98CE
CHECKSUM: AC™

78 NIBBRi F/VOlL 4/NO 8/1983

