Where can
you get answers fo
all your Apple questions?

Ask Nibble of course!

A

52 Domino Dr.,

How can print the Hi-Res screen on my mageWriter
printer?

“This has been one of the most frequently asked ques-

tions in the last year, and although the answer cannot

given in just a paragraph or two, this information

is 30 useful that T'll present the key pieces of information in this
’s column

Since many of you will want the information presented for an
Applesoft program, and the rest of you will want it in assembly
language, I'm granting both your wishes and doing it in both lan-
guages at once! Actually, some low-level operations are very
difficult to do in BASIC, and 50 you really nced some assembly
language routines. On the other hand, given an assembly language
foutine 10 handle the bits on the screen, the main program to do
the screen dump can be done in a very few lincs of BASIC.

In theory, printing graphics on the ImageWriter II (this sam rou-
tine also works on the ImageWriter I and Seribe) is very simple.
You simply send the printer an initializing code, and thereafier cv-
ery st bit in each screen byte causes a single pixel to print on your
‘graphics image. This is identical to the way Hi-Res graphics is creat-
<d on the screen, 5o everything should be casy.

Here's the catch: The Hi-Res screen uses the first seven bits in
a byte to put individual dots on the screen horizonrally (the eighth
bit s ignored). The printer, on the other hand, prints all eight bits
in cach byte vertically. So, to print the Hi-Res screen, you have
10 take the first bit from each of the first cight rows and combine
them into the first byte that goes to the printer. Then, the second
bit from each screen row is taken and put into the second byte.
Note that bit 0 (the least significant bit, or LSB) in screen memory
| is the leftmost pixel on the screen, On the printer, the LSB of the
| byte sent is the topmost dot of the column printed.

Figure 1 shows the upper left-hand comer of the Hi-Res screen
as drawn by the sample screen dump program (Listing 3). The pro-
| gram first draws a frame around the ntire screen, and then draws

a diagonal line from the upper-left comer toward the middle of the
| sereen. The diagram shows an enlarged view of both the screen and
printer pixcls, and shows the data bytes for cach. For the screen,
the first group of cight bytes are $7F, $07, $0D, $19, $31, $61, $41
and $01. Each byte represents seven horizontal pixels on the screen.

Roger Wagner is the president of Roger Wagner Publishing, Inc.,
| the publisher of MouseWrire and the Merlin Assembler, and the
author of Assembly Lines: The Book and Apple 11GS: Assembly
Language for Bcgmmn The program is compatible with both Pro
DOS and DOS 3.

Send your questions to Ask Nibble,
Concord, MA 01742,

o print this, the program must send out seven new bytes,cach
of which contains a vertical group of eight pixcls. As scen in Figure
1, the bytes sent to the priner are not the same as the bytes in screen
memory ($2000 to S3FFF)

The approach I have taken is to write an assembly language rou-
tine that takes a giver reen coordinate and returns seven bytes
containig that pse] withn block that s sevem pixels wide and
eight pixels high. This is convenient for a number of reasons. First,
it is a logical chunk of memory to process — the lowest common
denominator of the screen and the printer, as it were. Also, by hay-
ing the routine pro-
cess only a part of
m

Screen Pixels
Bitso1 23456

Screen

screen printing_is

of a Hi-Res screen if
you wish. Last of all,
the 7 x 8 patter cor-
responds o the most

mmon Hi-Res char-
acter generator pat-
tern, which means
that the screen chunks
printed perfectly
match single charac-
ters put on the screen
by most Hi-Res print-
ing routines.

To start, Listing 1
shows you the scrcen
processing routine. I'll
summarize the main
points of the routine.
: The routine is called
with the statement
CALL AD,X,Y,AS,
where AD is the rou-
tine’s address, , 3 is
the starting point of the screen block, and AS is the string to rewrn.
‘The START section checks to make sure we're not in BASIC's
immediate mode. This is because the program uses part of the in
put buffer ($280-286) as the work area to build the bytes to send
o the printer. XPOSN and TESTX then evaluate the Applesoft vari-
able for the horizontal position, and tests to make sure X is
greater than 273, since we'll be reading from there to X =
YPOSN docs a similar function for the Y position.

AXXXXXXX
<
2
5
=
B
3

£00000001 = $01

Printer Pixels
Bytes 0123456

LsB

Printer
Bytes MSB

RN = 4FF o]
m—'
- 307

31

811000001 = 36—
Figure 1: Converting Screen Pixels to
Printer Dots

The processing routine itself will set up seven bytes in memory,
all set 10 zero, and then use the ROR instruction to move bits into
‘each byte of the output group s the screen bytes are scanned. Locat
ing the byte in memory that corresponds to a given screen position
can be tricky, o we'l] use the built-in Applesoft routine HPOSN.

SETUP clears the seven bytes in our buffer to zero; then LO-
CATE uses HPOSN to find the base address of the upper-left comer
of the screen memory byte group. This value s saved in
XVAL and YVAL, 50 that we can return there after cach vertical
row of bits is scanned.

GETCOL is the beginning of the real working part of the rou-
tine, and sets a MASK value to $01, corresponding (o our exami-

of the first bit of the screen byte in the first row. TOP
initializes the pointer GBASL to use indirect addressing as we scan
the bytes. We'll also set up a counter to tell us when we've scanned
the eight rows of screen bytes.

GETBYTE gets the byte from screen memory; by ANDing this
with MASK, we can tell whether the first pixel (bit 0) is on. If it
is, the Carry bit is set in ed into the first byte in the
buffer. NXTBYTE uses the Hi-Res routine INCRY,, which auto-
matically adjusts GBASL to point to the next line down for each
pass through the loop. On each successive loop through GETBYTE,
successive bits are pushed into this first byte, unil we've pushed
all eight bits. NXTCOL increments the X-register so successive
loops each act on each of the bytes in the buffer. After seven loops,
the bitin MASK wil have moved to positon 7, which makes MASK

*‘negative’" ($80), and the BPL TOP test fails.

SENDSTR then sends the eight bytes back to Applesoft s a string
variable. One interesting tidbit here, as & reward for those who ac-
wally read the text of program explanations, is that this technique
s different from the general purpose siring-passing method
presented last year. In this method, it is the lengih of the string
that controls what is sent back to Applesoft, not a terminating charac-
ter such as 300 or a carriage return, as is more commonly used
This is necessary because the graphic data being sent back in the

an have any value from $00 to SFF, and thus there is no
*safe”” terminating character that might not be found in the string
data itsel

“The BASIC program i in Listing 3. The program begins by load-

. but in a moment we're going to need

nd the bytes to the printer, and
the two together just won't it nto the available space byte on page
3. Since we're already using the input buffer starting . the
really no reason not to use the memory from $2A0 on for our rou
tines. (One possible exception: Some clock cards use the last part
of the input buffer, but more on the alternatives later.)

Graphics printing on the ImageWrker and compatbe pincrs
is very easy, at least in regards to setting things up. After the usual
PR (0 turn on the printer, we have to put the interface card into
the *‘transparent mode." The transparent mode means the printer
card won't be looking for a Control-1 in the data stream, and like-
wise, won't add line feeds to carriage return bytes. This is neces-

e » grakics b o bo s valee from SO0 o SFF,
and the values $09, SOD, and any others that the inter-
face card might respond to yedirl ignored. However, since the
printer card won't be adding lincfeeds, we will have to o this our-
selves during the printout.

Escape n Escape T16 sets the character pitch and linefeed dis-
tance for a properly proportioned picture. You can experiment with
other values and pitch commands to get smaller, denser pictures
or larger images as you des

“The actual graphics printing is initiated by telling the printer how
many graphic byes Yo are seing. The command is Ecape G
nnnn, where nnnn is the number of bytes (i.e., groups of eight ve
(il pincl) you'rc sending. In our cse, we're sending 280 bytes
for the Hi-Res screen.

Next, a nested loop scans positions 0 to 23 vertically. The actual
Y coordinate s determined by multiplying the Y value by § (8 bytes
per block). 1 could have used FOR Y = 0 TO 194 STEP §, but
1 chose this form to show the correspondence to the positions on
the text dsin s cte o this routine with a Hi-Res

character

"The X loap Hkewise counts from 0 t0 39, which s multiplicd
by 710 get the true X coordinate. The call to the bitmap routine
then returns the seven bytes to send to the printer.

“The only catch now is printing the full range of data bytes to the
printer. If you've ever experimented with this, you've found that
Applesoft automatically sets the high bit on everything you try to
print. If your program says PRINT CHRS/(20), the printer actually
receives CHRS(20+128). Fortunately, i is easy (o create an alter-
natc PRINT routine o the usual Applesoft command. Listing 4 is
a routine that will print any string to the printer without conversion.

Graphics printing on the
ImageWriter is very easy, af
least in regards to sefting
things up.

‘The routine is actually very simple. Tt just sends the characters
in the string you specify directly to COUT (SFDED = **Character
Qutput”"), bypassing the Applesoft routines entirely.

Final notes: One of the big problems with assembly language rou-
tines is the problem of where o put them in memory and how to
fit several of them at once in a given area. These routincs have
been written to be completely position-independent, so they can
be used at any location you wish. That is to say, if you reccived
the Trial Size Toolbox offered for free in this column several times
in the past, you can use the Workbench program on that disk o
add these routines directly to any Applesoft program without hay-
ing to worry at all about finding a memory location. The syntax
for the routines in that case is &"ALTPRINT",AS and
&ROTATE" X,

1 hope this has. help:d you get the general idea behind printing
graphics on your printer. If you do not have an ImageWriter printer
or compatible, try looking through the reference manual that came
with your printer. Chances are that except for minor differences
in the printer initalization sequence, you'll be able to use the general
principles provided here with very litde modification. Have fun!

ENTERING THE PROGRAMS

If you have an assembler, use the source code from Listing 1
and save the object code as ROTATE. If you don't have an assem
bler, use the hex code from Listing 2 and save it with the command
BSAVE ROTATE,A$8000, LSAA

Enter the Applesoft program in Listing 3 and save it with the
command
SAVE IW.PRINT .DEMO

If you have an assembler, use the souree code from Listing 4 and
save the object code as ALT.PRINT. If you don’t have an assem-
bler, use the hex code from Listing 5 and save it with the command

BSAVE ALT.PRINT.A$8208, 52C

PS. you haven'goten your TralSize Toolox. you can il
receive one for free by writing to me at Roger Wagner Publishing,
Inc., 1050 Pioneer Wzy Suite “P", El Cajon, CA 92020, and men-
tioning that you're an Ask Nibble reader’

ASK NIBBLE continued from page 20

LISTING 1: ROTATE Source Code

xposw

ety

PLAGE TO 8U1L0 0UR STRING

326,27 = BASE ADOR. OF SCREEN LINE
OFFSET To ScReE BYTE

36 a
EYALUATE MMERIC EXPRESSION
CONVERT FAC TO. INTEGER
s

cmecx rox DIRECT WoE
APPLESOFT ERR ROUTINE

GET oMM AN VALUE < 266
onecx ko= coma

© w6

s x
D Liwewr
E et

TS e n2re
e ROk
Da XA
e sare
cc vPos
ok

S
o asn
st
o
o
I
sewe Lok wses
oo
Loor STA BUFFER.X
Bex
B Loor
LooaTe oK XA :
v AL
oa WAL
s weos
o
STA XA
DA GaasLel
STA xvALs L
A
WAL
ceTcoL WA wo)
STA sk
ox
e

store 11
I BYTE 0F AESULT
Srore 17

HIGH BYTE OF WAK VALUE (1.E

£ LON BYTE OF WAX VALUE

ILLEsAL aTy Ewon
oA MO EVALUATE

+ ovecx.
 sTomt ¥ posw
Ay vae

“ILLEGAL QY EmnoR

sToRe 2680 BvTE

+ 3200200 = 300's
L @ ovres)

€ oF x posK

Mo tvre or x pow

© SET up 326.27-8ASE AoORESS
© 365 Shoriz. LIne orreeT

Save vaLes.

SET MASK T0 81T 1 = 15T PIXEL

FIRST BYTE N B0

x
counTen For Line ¢
RESTORE MiRCS cURSOR
Ger screen svTe

TesT BT
P woT LI

Y,

05
106 ser sec

107 IJECTI ROR BUPFER.X : INJECT SET 81T IN BYTE X OF QUSFER
108 o RTEYTE ALY

109

mear oc

L1 INJECTZ WOW BUFFERX INJECT CLR 81T IN BYTE X OF BUFFER
nz

113 NTBYTE st ey MovE com one 1 1N

18 oec cm

ns B GETOVIE . GET NEXT PIXEL DoWN

ns

17 erco. e NEXT BYTE 1N 5UF)

s AL sk NEXT BIT IN TEST MASK

19 o Tor N0 GET NEXT coL
120

120 senosTR SR Cocou r

122 se prRGeT FIND VARIABLE R MAKE 1

123 st owsTR IT'S 4 STRING

124 STA roRet ALY = DESCRIPTOR T0 STRING

128 ST roRmTes

12

127 o e + LN OF STRING (7 CHARS)

12 se sTRsea SET UP SPACE IN MEWORY.

12 X wcorrER | LoW BVIE OF OAT

130 LOF WSBURFER | MIGH BYTE OF OATA

i1 3% T WOVE DATA TO

2 38 MOVE DESCRIPTOR T0 TewP

i s s ASSION To VARIABLE

i3

35 oo Ars

13

137 oo o CHECKSUN = 48 (OMIT FOR OTHER ASSEMBLERS)
END OF LISTING 1

LISTING 2: ROTATE

TOTAL: AES8

END OF LISTING 2

LISTING 3: IW.PRINT.DEMO

CB |1 REM .

47 | 2 REM - IN.PRINT.DEMO

47 |3 REM + BY ROGER

3F |4 REM - COPYRIGHT(C) 1988

38 |5 REM + MICROSPARC, INC.

BF |6 REM - CONCORD, MA 01742

BF |7 REM

99 | 10 PRINT CHRS (4): BLOAD ROTATE.AS2A0": REM
672 DEC

AB | 20 PRINT CHRS (4):"BLOAD ALT.PRINT.AS350"
REM 848 DI

BS | 30 REM DRAW PICTURE

01 | a0

AR | 50 HCOLOR=

£ | &0 HPLOT 2.0 To 100.100

AE |70 HPLOT 0.0 TO 279.0 TO 279,191 T0 0,191 T0 0 |
K |

3A | 80 REN PRINTER DUMP

49 | 90 PRINT CHRS (4);°PRAL"

92 | 100 PRINT GRS (9).°K': CHRS (9):'Z": REM MO |
LF W/ CR: TRANSP. NODE

4E | 110 PRINT CHRS (27):°n’; CHRS (27):°T16"

A6 | 120 FOR 0 10

94 | 130 PRINT CHRS (27):°G0280";

6A | 140 FOR X = 0 TC

97 | 150 CALL 672.X » 7.Y + B.AS: REM GET SCREEN B

49 | 160 CALL 848 AS: REM TRANSPARENT PRINT

6D | 170 NEXT X: PRINT CHRS (10)

0C | 180 NEXT Y

05 | 196 PRINT CHRS (4):"PRIO"

TOTAL: OF31

END OF LISTING 3

LISTING 4: ALT.PRINT Source Code

ALTPRINT Source Coce

oy Roger mays

Capyright(c) 1988
CroSPARC. Inc.

'
2
H
s
H

woor e CaRACTER ouTRUT RouTINE
ERC T TEMP LGCATION FOR STRS LENGTH
I (NCRUALLY FAC)
13 poeve Eu soors
18 rResTR EQu sk
15 NoEX sse sse_ o
161018 £ se306 arec fom oimect mooe
7
e)
5 Cmcow FQu soesE
o FrERt £ soarz
|
2 sTART st 1018 MAKE SURE mE RE NOT IN TMED MO0
358 cimgor
e ook Fon comin
e e
ase ccow Rovance TXTPTR
NANE USR FRMEVL . CVALUATE STRING EXPRESSION
3R FRESTR VAKE SURE IT'5 A STRING AND
ser
CAmEn, TEx-Loc)
ceex cu 1300 oK For Len = o
P
@R x s [
e Fpeme
PN STA Lew S Levan
v e | START AT BEG_ 0F STRING
LooP DA (INGEX).Y | GET CHAR OF NAME STRING
sk BRINT 1T
ool
Py uen 00w ver?
e Loor NovE 1
wts ALL oowe!
e CHECKSUM = 63 (OHIT FOR OTHER ASSEMOLERS)

END OF LISTING &

LISTING 5: ALT.PRINT
Start: 8000

5E(8000:20 86 E3 20
D7 (8208:D0 03 20 BE
79|8010:28 FD ES C
8018:35 4C 12
23|8020:81 SE 20
868028:90 F6 60

Length

87 00 C9
DE 20 78

2

2c

oD |

00 D0 05

85 9D A0 |

ED FD C8 C4 9D ‘
|
|

>
m
°
28

68
TOTAL: B4B1

END OF LISTING 5

