Graphics Workshop

DOUBLE HI-R&S |
GRAPHICS I

The Graphics Workshop explores block
shape animation on the Double Hi-Res
screen in Part |l of the Double Hi-Res series.
A machine language driver and several
demonstration programs show how it's
done.

by Robert R. Devine
Small Compuier Services
PO. Box 10

Adona, AR 7200I

n the May issue we laid all the needed

groundwork for Double Hi-Res. This

month we'll develop more routines for our
DHR DRIVER, and begin to get into some
animation techniques.

If you've been conducting your own ex-
periments, you've probably found that there
is a lot of potential in Double Hi-Res: how-
ever, graphics animation from Applesoft is
rather cumbersome and slow. To avoid the
peculiarities of Double Hi-Res, the routines
that we'll develop will automatically handle
all the soft switch flipping for us, therefore
making it unnecessary for us to worry about
columns, duplicate addresses, and the like.

Let’s get to work.

Double Hi-Res Block Shapes

Figure 1 is a representation of the first shape
that we'll work with. This is the same alien
spaceship that we used earlier in the Graphics
Workshop series; however, this shape is de-
fined in such a way that it will work on the
Double Hi-Res screen.

Note that the shape is six bytes/columns
wide, but only three addresses wide. In regular
280-dot Hi-Res, the width of a block shape
was defined by the number of horizontal bytes
it occupied. In Double Hi-Res block shapes,
the width is defined by the number of ad-
dresses that it occupies; therefore, all Double
Hi-Res block shapes will be an even number
of columns wide. The shape in Figure 1 has
a width of 3 and a height of 14. The total size
of the shape is 3 * 14 % 2 = 84 bytes.

I have approached the shape width in terms
of addresses (rather than bytes) to avoid the
need to constantly check every byte of data to
see which way the page 2 soft switch needs
to be set. As it is now, our Double Hi-Res
shapes will require twice as many data bytes
as would be required by the same size

280-mode shapes. This already means that our
drawing routines will need to do twice the
work, so we want to avoid as much checking
activity as possible to maintain maximum
speed. By establishing a consistent shape
definition and data format, no checking ac-
tivitics are needed.

“..graphics animation from
Applesoft is rather cumber-
some and slow.”

Defining a Block Shape
Each of our shapes will be defined with five
values.

SHape NUMber (POKE 251, SHNUM)
Each of our shapes will have a number which
is stored in memory location 251 ($FB). This
value will tell our drawing routines where to
find the data that defines the shape.

The normal way of storing shapes in
memory is to begin at the top of available
memory (just below thc driver) and build
downward with cach additional shape. Each
of the shapes will begin at the very first byte
of amemory page; i.e., $7500, SRA00, $9000,
etc. There are also ways that you can store
multiple shapes on a memory page.. we'll get
into that later. If your shape begins at the first
byte of a memory page, you may let it
overflow onto the next page; therefore, there
is no maximum shape length that you need to
worry about.

To determine the proper shape number, take
the first two digits of the hex starting address
and convert those digits to their decimal value.
For example, let's use a shape that you are
going to store in memory beginning at $9000.
The first two digits of $9000 are $90, and since
144 is the decimal equivalent of $90, your
shape number will be 144.

Vertical Top (POKE 252 VT)
The value of VT will be the topmost Y-
coordinate that your shape occupies (0-191).

Vertical Bottom (POKE 253,VB)
The value of VB will be the lowermost Y-
coordinate that your shape occupies (0-191).

Horizontal Right (POKE 254,HR)
The value of HR will be the rightmost address
offset that your shape occupies (0-39).

Horizontal Left (POKE 255HL)
The value of HL will represent the leftmost
address offset that your shape occupies (0-39).

Every time we manipulate our shape on the
screen, we will specify the VT, VB, HR, and
HL of the shape to define the portion of the
screen in which our animation routines are to
perform their activities. The value of SHNUM
will be used with any routines that use the
Shape Definition Table which is stored in
memory.

As you look at Figure 1, you will see that
the current VT, VB, HR, and HL values for
our shape are 0, 13, 2, and 0, respectively.

What Is a Block Shape?

A block shape is a rectangular “block™ of
Hi-Res screen bytes which is bounded on the
top and bottom by VT and VB, and bounded
on the sides by HR and HL. A Block Shape
Table is a sequential string of data bytes (in
our example there are 84) which contains the
bit patterns for each byte within the rectangle.

Our animation and drawing routines step
through the table, element by element, and
place the proper bit pattern into the proper Hi-
Res bytes within the defined rectangle. Our
Shape Table contains no information indicating
where it begins or ends; therefore, our anima-
tion routines will continuc to manipulate
screen bytes until they have dealt with all bytes
within the bounds of VT, VB, HR, and HL.

If the dimensions that you have set to define
the rectangle do not conform to the Shape
Table data (the way the shape was created),
then the shape will be incomplete or distorted.
You will note that many of the bytes within
the rectangle have nothing at all to do with the
shape itself, and are in fact part of the
background; however, since they fall within
the shape's area of influence, they are
necessary parts of the block shape.

For more information on block shapes, see
“Graphics Workshop: Block Shapes, Part 1,"
Nibble Vol. 4/No. 3.

How to Create a Block Shape

Block shapes are probably the easiest of all
shapes to create. Rather than having to figure
out a lot of data values or vector moves that
go into each byte, all you need to do is draw
your shape on the screen, using any method
you like, and then use a routine that’s built into
the driver which will translate your drawing
into the needed Block Shape Table.

If you've been following the Graphics
Workshop series, then you can also use the
BLOCK SHAPE MAKER program which ap-

FIGURE 1: THE ALIEN SPACESHIP

peared in Nibble Vo. 4/No. 5 for the creation
of your shapes. Bear in mind that BLOCK
SHAPE MAKER creates shapes on the
regular Hi-Res screen, so you'll need to be
sure and make your shapes an even number
of bytes wide (the HR-HL dimension).

If you are planning to use color in your
shapes, be sure to use the proper sets of four
dots for color. Your shape will need to appear
twice as wide on the regular Hi-Res screen
as it will when you use it later on the Double
Hi-Res screen.

0 1 2 —address
HL=0 | ’ HR =2 (0-559)
=Mt norna =R INORXNQTARTLERZALISINAIRERRESTF x-coordinate
0
YI=0
' 1 1L
2 |
3 j
4 ___I—_ ‘
o 5
g ;
s]
—
g 7
<
> 8
9
10
11
12 I_J
13
VB=13
1X | 1X 1 1X 1 —page
FIGURE 2: SHAPE PROCESSING METHODS
ENTER EXIT
HL HR
— HL HR 1 1 HL HR
VT > . VT
| - —
o
— >4
ENTER : ENTER
VB EXIT 1 VB
IX 11X 11X | IX 11X 11X 1 IX 1 IX 1 IX | =—PAGE
REVDIR DRAWDN SCAN
DRAW

More Routines for the DHR Driver

At this point it’s going to be a bit difficult
to try any animation tests until you have some
new routines to work with, so let’s continue
building our DHR driver. The first thing to
do is BLOAD DHR.DRIVER which we

! developed in the May issue. (See Listing 0.5
for the hex dump of DHR.DRIVE if you're
joining us this month. Key it in before adding
SCAN, etc.) Then enter the Monitor and we'll
add some new routines.

SCAN $93DA

The SCAN routine (Listing 1) is one of the
most important routines, as it is the part of
the driver that creates the shapes that you will
use. Its function is to look at the shapc which
you have drawn on the screen (using HPLOTS
or whatever), take the data patterns from the
screen, and create a Block Shape Table. To
use SCAN you must specify VT, VB, HR, and
HL to tell SCAN which area of the screen it
is to use in creating the Shape Table. You must
also POKE 251,SHNUM 1o tell the routine
where in memory you want the Shape Table
1o be assembled and stored.

DRAW $9394

The DRAW routine (Listing 2) is exactly
the opposite of SCAN. It takes the data from
the Shape Table in memory and places the
proper values directly on the Double Hi-Res
screen. Each time the routine changes to a new
Hi-Res screen address, it places the first data
byte in the odd column (page 1) and then
places the next data byte in the even column

(page 1X).

LISTING 0.5:

DHR.DRIVER
FROM THE MAY ISSUE

9283- A9 51 20 92 92

9288- A9 26 4C 9F 92 A9 EA 20
9299- 9F 92 8D 63 93 8D 72 93
9298- 8D AB 93 8D BA 93 6@ 8D
92A0- 64 93 8D 73 93 8D AC 93
92A8- 8D BB 93 60 A5 FE C9 27
92BO- BO 94 E6 FE E6 FF 60 A5
92B8- FF FO @4 C6 FE C6 FF 60
92CQ- A5 FC FO@ @4 C6 FC C6 FD
92C8- 60 A5 FD C9 BF BO 04 E6
9208- FC E6 FD 6@ A5 FC 38 E5
92D8- E3 30 ©9 85 FC A5 FD 38
92E@G- E5 E3 85 FD 60 A5 FD 18
92E8- 65 E3 C9 CO B2 @9 85 FD
92F@- A5 FC 18 65 E3 85 FC 60
92F8- A9 00 8D @1 CO 85 FA A5
9300- FD 85 06 20 64 94 A4 FF
9308- 8D 55 CO 20 2B 93 8D 54
9310- CP 20 2B 93 C8 C4 FE 90
9318- EF F@ ED C6 96 A5 96 C9
9320- FF F@ 94 C5 FC BO DC 20
9328- DA 93 60 A2 @0 Al FA C9
9330- 7F F@ 1@ C9 A1 94 aC 86
9338- F9 4A 26 F9 E8 EO 07 90
9340- FB A5 F9 91 26 E6 FA D@
9348- @92 E6 FB 60 A9 00 8D 01
9350- CO 85 FA A5 FC 85 06 20
9358- 64 94 A4 FE A2 90 Al FA
9360- 8D 54 C@ 51 26 91 26 E6
9368- FA D@ @02 E6 FB Al FA 8D
9370- 55 CO@ 51 26 91 26 E6 FA
9378- D@ 02 E6 FB 88 CO FF FQ
9380- 04 C4 FF B@ D9 E6 06 A5
9388- @6 C9 FF F@ 96 C5 FD 90
9390- C6 FO C4 60 A9 909 8D 01
9398- C@ 85 FA A5 FD 85 @6 20
93A0- 64 94 A4 FE A2 00 Al FA
93A8- 8D 54 C@ 51 26 91 26 E6
93B0- FA DO @2 E6 FB Al FA 8D
93B8- 55 CO 51 26 91 26 E6 FA
93C0- D@ 02 E6 FB 88 CO FF FO
93C8- 04 C4 FF BO D9 Cé6 06 A5
9300- @6 C9 FF F@ 04 C5 FC BO
93D8- Cb 60

This 1s the same approach used by SCAN,
DRAW, and DRAWDN. To use DRAW, you
must first specify VT, VB, HR, and HL to
define where on the screen the shape is to be
drawn. You must also POKE 251, SHNUM
to tell the routine where in memory it is to
find the Shape Table.

DRAWDN $934C

LISTING 1: THE SCAN ROUTINE

2100 « SCAN ROUTINE
@119 « COPYRIGHT 1984 BY MICROSPARC, INC.
0120 «
@130 « S-C ASSEMBLER
0140 «
1200 OR $93DA
1810 TF SCAN $93DA.0BJ
POFC- 1€20 VT .EQ S$FC «+ DECIMAL 252
BOFD- 1030 VB .EQ $FD «+ DECIMAL 253
QOFE - 1049 HR _EQ SFE «« DECIMAL 254
BOFF - 1858 HL .EQ SFF «« DECIMAL 255
0026 - 1860 HBASL _EQ $26 «» DECIMAL 38 (SCREEN BASE
0927 - 1079 HBASH .EQ $27 «+ DECIMAL 39 ADDRESS)
0006 - 1080 YO EQ $6 «« DECIMAL 6
OOFA- 1090 BASL .EQ $FA «+ DECIMAL 250 (TABLE BASE
20FB- 1180 BASH .EQ $FB -+ DECIMAL 251 ADDRESS)
9464 - 1110 YADDR _EQ $9464 «« DECIMAL 37988 (READ YTABLE)
Co54 - 1114 PAGE1 .EQ $CP@54
CP55- 1116 PAGE1X _EQ $C@55
93DA- A9 00 1120 SCAN LDA #9 «+ SCANNER CALL 37853 TO ENTER
93DC- 85 FA 11380 STA BASL «+ POINT TO START OF TABLE
93DE- A5 FD 11429 LDA VB +« GET BOTTOM Y COORDINATE
93E@- 85 06 1159 STA YO +« STORE IN $6 FOR USE BY YADDR
93E2- 20 64 94 1160 L1 JSR YADDR +'« RETURNS-LO=HBASL /H [=HBASH
93E5- A4 FE 1179 LDY HR «+ SET Y-REG TO RIGHTMOST BYTE
G3E7- A2 00 1186 LDX #0 e« SET TABLE OFFSET=8
G3E9- BD 54 CO 1196 L2 STA PAGEl «+ READ MAIN MENORY
93EC- Bl 26 1195 LDA (HBASL) .Y «+ GET SHAPE BYTE FROM SCREEN
93EE- 81 FA 1200 STA (BASL.X) e+ PUT IN SHAPE TABLE
93F@- E6 FA 1230 INC BASL «+ POINT TO NEXT TABLE ELEMENT
93F2- DO 02 1240 BNE J1 e [F x256 BYTES-JUMP
G3F4- E6 FB 1250 INC BASH «+ PAGE OVERFLOW-GOTO NEXT PAGE
93F6- 8D 55 C@ 1252 J1 STA PAGE1X «» READ AUXILIARY NEMORY
93F9- Bl 26 1253 LDA (HBASL) .Y e+ GET SHAPE BYTE FROM SCREEN
93FB- 81 FA 1254 STA (BASL.X) «« PUT IN SHAPE TABLE
93FD- E6 FA 1255 INC BASL «« POINT TO NEXT TABLE ELEMENT
93FF- DO 02 1256 BNE NC1 .+ IF x256 BYTES-JUMP
9401- E6 FB 1257 INC BASH «+ PAGE OVERFLOW-GOTO NEXT PAGE
9403- 88 1258 NC1 DEY «« POINT TO NEXT BYTE x---
Q404- CO FF 1260 CPY #SFF «+« HAS Y-REGISTER REACHED @ 7
9406- FO 04 1270 BEQ NXTLN «+ YES-GOTO NEXT LINE
9488- C4 FF 1280 CPY HL e IS Y-REGISTER >=HL ?
940A- BO DD 1290 BCS L2 «+ YES-GET THE NEXT BYTE
940C- C6 06 1300 NXTLN DEC YO «+ MOVE UP TO NEXT LINE
Q4QE- A5 06 1318 LDA YO -« GET NEW Y COORDINATE
941€- C9 FF 1320 CMP #$FF «+ HAS Y-COORDINATE REACHED © 7
9412- FO 04 1330 BEQ RTN «s YES-WE 'RE FINISHED
9414- C5 FC 1340 CMP VT «s HAVE WE REACHED VT YET ?
9416- BO CA 1350 BCS L1 o+ NO-START THE NEXT LINE
9418- 60 1360 RTN RTS - DONE-EXIT ROUTINE
LISTING 2: THE DRAW ROUTINE
9108 « DRAW ROUT INE
#1190 « COPYRIGHT 1984 BY MICROSPARC INC
9120 « S-C ASSEMBLER
0130 -
1008 OR $9394
1218 TF DRAW $9394 0B.
0OFC- 18208 VT EQ SFC «+ DECIMAL 252
0OFD- 1838 vB EQ SFD «+ DECIMAL 253
0OFE - 19040 HR . EQ SFE «+ DECIMAL 254
0OFF - 1850 HL .EQ SFF «+ DECIMAL 255
0026 - 1060 HBASL EQ $26 .« DECIMAL 38 (SCREEN BASE
0827 1070 HBASH EQ $27 .+ DECIMAL 39 ADDRESS)
0006 - 1082 YO EQ $6 «+ DECIMAL 6
OOFA- 1990 BASL EQ S$FA «+ DECIMAL 250 (TABLE BASE
0OFB- 1100 BASH EQ $FB ++ DECIMAL 252 ADDRESS)
9464 - 1112 YADDR EQ $9464 ++ DECIMAL 37988 (READ YTABLE)
ces54 1120 PAGE1 EQ sC@s54
CO55 - 1130 PAGEIX EQ $C@55
9394- A9 00 1150 DRAW LDA #9 +o CALL 37780 TO ENTER
9396- 85 FA 1178 STA BASL «+ POINT TO START OF TABLE
9398- A5 FD 1180 LDA VB «+ GET BOTTOM Y-COORDINATE
939A- 85 96 1198 STA YO <+ STORE IN $6 FOR USE BY YADDR
939C- 20 64 94 1209 L1A JSR YADDR +» RETURNS-LO=HBASL/HI=HBASH
939F- A4 FE 1218 LDY HR +s SET Y-REG TO RIGHTMOST BYTE
93A1- A2 00 1220 LDX #@ «« SET TABLE OFFSET=0
93A3- Al FA 1230 L2A LDA (BASL.X) ++ GET SHAPE BYTE FROM TABLE
93A5- 8D 54 C® 1240 STA PAGE1L v+ DRAW MAIN MEMORY
93A8- 51 26 1250 EOR (HBASL) .Y ++ MODIFY TO BACKGROUND
93AA- 91 26 1260 STA (HBASL) .Y ++ LOAD SHAPE BYTE ON SCREEN
93AC- E6 FA 1270 INC BASL +«« POINT TO NEXT TABLE ELEMENT
93AE- DO 22 1280 BNE J1 ve IF x256 BYTES JUMP
93B0- E6 FB 1299 INC BASH ++ PAGE OVERFLOW-GOTO NEXT PAGE
93B2- Al FA 1300 J1 LDA (BASL.X) v+ GET SHAPE BYTE FROM TABLE
93B4- 8D 55 C@ 1318 STA PAGEIX ++ DRAW AUXILIARY MEMORY
9387- 51 26 1315 EOR (HBASL) .Y ++ MODIFY TO BACKGROUND
93B9- 91 26 1320 STA (HBASL) .Y ++ LOAD SHAPE BYTE ON SCREEN
93BB- t6 FA 1330 INC BASL e POINT 10O NEX! TABLE ELEMENI
93BD- D@ A2 1340 BNE NC2 «e IF x256 BYTES JUMP
93BF- E6 FB 13590 INC BASH +« PAGE OVERFLOW-GOTO NEXT PAGE
93Cl- 88 1368 NC2 DEY ++ POINT TO NEXT SCREEN ADDRESS
93C2- CB FF 1370 CPY #SFF +« HAS Y-REGISTER REACHED @ ?
93C4- O 24 1380 BEQ NXTLN2 ++ YES-GOTO NEXT LINE
93C6- C4 FF 1398 CPY HL «« IS Y-REGISTER >=HL ?
93C8- 3@ D9 1400 BCS L2A «« YES-JUMP TO LOOP2A
93CA- C6 96 1410 NXTLNZ DEC YO «« MOVE UP YO NEXT LINE
93CC- A5 86 1420 LDA YO «s GET NEW Y-COORDINATE
93CE- C9 FF 1430 CMP #$FF «+ HAS Y-COORDINATE REACHED @ 7
93D0- F@ B84 1448 BEQ RTN2 +« YES-WE'RE FINISHED
93D2- C5 FC 1450 CMP VT «« HAVE WE REACHED VT YET 7
93D4- B9 C6 1455 BCS LIA «s NO-START THE NEXT LINE
93D6- 6@ 14780 RTN2 RTS <+ DONE-EXIT ROUTINE
LISTING 3: THE DRAWDN ROUTINE
9100 « DRAWDN ROUTINE
2110 .
0120 « COPYRIGHT 1984 BY MICROSPARC. INC
0130 « S-C ASSEMBLER
0140 .
1000 OR $934C
1010 TF DRAWDN $934C 0BJ
BOFC- 1820 VT EQ SFC +o DECIMAL 252
POFD- 1030 VB EQ SFD ++ DECIMAL 253

The DRAWDN routine (Listing 3) works
just the same as DRAW except that it places
the data bytes on the screen in a slightly dif-
ferent order. This routine 1s handy for flipping
shapes upside-down, or moving shapes behind
(or from behind) other shapes or background.
We'll demonstrate this routine shortly. To use
DRAWDN you will again need to specify
SHNUM, VT, VB, HR, and HL.

REVDIR $91F8

The purpose of REVDIR (Listing 4) is to
physically reverse the appearance of a shape
from left to right by placing the Shape Table
bytes on the screen in reverse of the order in
which they were SCANned.

Before each byte is placed on the screen,
the bit pattern of bits 0-6 is reversed, so the
routine not only changes the order, but also
the values that are stored on the Hi-Res screen.
Bit 7 is ignored and automatically set to zero.

Betore the bits are reversed, the byte is first
checked tor the values 0 (00000000) and 127
(OI1111). You'll notice that our sample shape
has 59 of the 84 bytes with one of these two
patterns, so you can save time by not revers-
ing unneeded bytes. This is also a good reason
why you should use HCOLOR=3 when
creating your shapes, as this will keep bit 7
set to zero.

Each time this routine changes to a new
screen address, it places the first data byte on
page 1X (the even column). and then places
the next data byte on page 1 (the odd column).
After the shape is reversed and placed on the
screen, the reversed shape is then reSCAN-
ned into the Shape Table so that the table
always conforms to the appearance of the
shape on the screen. REVDIR is also defined
with SHNUM, VT, VB, HR,and HL.

The shape processing methods shown in
Figure 2 illustrate how each of the above
routines processes the data bytes within the
defined area of the block shape. We will not
discuss the internal workings of each routine
here, as each routine is heavily documented
within each listing.

Notice in Figure 2 that both SCAN and
DRAW enter the shape at VB/HR and work
through the bytes, ending at VT/HL; therefore,
DRAW will display the shape exactly the same
way that it was SCANned.

DRAWDN begins placing shape bytes on
the screen at VT/HR, working through to
VB/HL. The result is that DRAWDN will
draw the shape upside-down. This routine can
be used to flip shapes over, or as we'll soon
see, both DRAW and DRAWDN can be used
to bring shapes from behind other shapes.
Which routine you select will depend on
whether you're coming from behind another
shepe at the top or the bottom of the shape.

The REVDIR routine begins processing the
shape at VB/HL, and finishes up at VT/HR.
The effect here is one of flipping the shape
over from left to right.

QOFE- 19490 HR .EQ SFE «+ DECINAL 254
BOFF- 1050 HL .EQ SFF «+ DECINAL 255
0026 - 1060 HBASL .EQ $26 «+ DECINAL 38 (SCREEN BASE
2027 - 1670 HBASH .EQ $27 «+ DECINAL 39 ADDRESS)
0006 - 1680 YO .EQ $6 «+ DECINAL &
POFA- 10990 BASL EQ SFA «+ DECINAL 250 (TABLE BASE
GOFB- 1100 BASH EQ SFB «« DECINAL 252 ADDRESS)
9464- 1110 YADDR EQ $9464 .. DECINAL 37988 (READ YTABLE)
Co54 - 1120 PAGE1 .EQ $CO54
CO55- 1130 PAGE1X .EQ $C@55
934C- A9 00 1150 DRAWDN LDA #@ «¢ CALL 37788 TO ENTER
934E- 85 FA 1170 STA BASL s+« POINT TO START OF TABLE
9359- A5 FC 1180 LDA VT e+ GET TOP Y-COORDINATE
9352- 85 26 1199 STA YO «+ STORE IN $6 FOR USE BY YADDR
9354- 20 64 94 1200 L1A JSR YADDR «+ RETURNS-LO=HBASL/HI=HBASH
9357- A4 FE 1219 LDY HR ++ SET Y-REG TO RIGHTMOST BYTE
9359-. A2 @9 1220 LDX #@ e« SET TABLE OFFSET=0
935B- Al FA 1230 L2A LDA (BASL ,X) e« GET SHAPE BYTE FROM TABLE
9350- 8D 54 CP 1240 STA PAGEl ++ DRAW MAIN MEMORY
9368- 51 26 1250 EOR (HBASL) .Y «+ MODIFY TO BACKGROUND
9362- 91 26 1260 STA (HBASL).Y «+ LOAD SHAPE BYTE ON SCREEN
9364- E6 FA 1278 INC BASL «+ POINT TO NEXT TABLE ELEMENT
9366- DO 02 1280 BNE J1 e« IF x256 BYTES JUMP
9368- E6 FB 1299 INC BASH ++ PAGE OVERFLOW-GOTO NEXT PAGE
936A- Al FA 1300 J1 LDA (BASL.X) «+ GET SHAPE BYTE FROM TABLE
936C- 8D 55 CP 1310 STA PAGE1X «« DRAW AUXILIARY MEMORY
936F- 51 26 1315 EOR (HBASL) .Y s MODIFY TO BACKGROUND
9371- 91 26 1320 STA (HBASL) .Y «+ LOAD SHAPE BYTE ON SCREEN
9373- E6 FA 1330 INC BASL e« POINT TO NEXT TABLE ELEMENT
9375- DO @2 1348 BNE NC2 «s IF x256 BYTES JUMP
9377- E6 FB 13590 INC BASH ++ PAGE OVERFLOW-GOTO NEXT PAGE
9379- 88 1360 NC2 DEY e+ POINT TO NEXT SCREEN ADDRESS
937A- CO FF 13780 CPY HSFF e+ HAS Y-REGISTER REACHED © ?
937C- FO 04 1380 BEQ NXTLN2 s YES-GOTO NEXT LINE
937E- C4 FF 1390 CPY HL ee IS Y-REGISTER >=HL 7
9388- BO D9 1400 BCS L2A o+ YES-JUMP TO LOOP2A
9382- E6 06 1419 NXTLNZ2 INC YO s MOVE DOWN TO NEXT LINE
9384- A5 96 1420 LDA YO e+ GET NEW Y-COORDINATE
9386- C9 FF 14380 CMP #SFF «+ HAS Y-COORDINATE REACHED 0 ?
9388- FO @6 1440 BEQ RTN2 ++ YES-WE'RE FINISHED
938A- C5 FD 1450 CMP VB «+ HAVE WE REACHED VB YET 7
938C- 990 C6 1455 BCC L1A e«s NO-START THE NEXT LINE
938E- FO C4 14680 BEQ L1A e NO-THIS IS LAST LINE
9390- 60 1479 RTN2 RTS «+ DONE-EXIT ROUTINE
LISTING 4: REVDIR

@108 « REVDIR ROUTINE

gL10 »

9120 « COPYRIGHT 1984 BY MICROSPARC, INC

@138 « S-C ASSEMBLER

0140 »

1800 OR $92F8

1010 TF REVDIR $92F8.0BJ
QOFC- 1020 VT _EQ S$FC . »+ DECINAL 252
BOFD- 1030 VB _EQ $FD «+ DECINAL 253
QOFE- 1040 HR .EQ SFE ++ DECINAL 254
QOFF - 1050 HL .EQ SFF «+ DECINAL 255
0026 - 1060 HBASL .EQ $26 «+ DECINAL 38 (SCREEN BASE
0027 - 1079 HBASH .EQ $27 «+ DECINAL 39 ADORESS)
0006 - 1080 YO .EQ $6 «+ DECINAL 6
@0F9 - 1085 NUBYTE .EQ $F9 «+ DECINAL 249
GOFA- 1090 BASL EQ SFA «+ DECINAL 250 (TABLE BASE
0OFB- 1100 BASH EQ $FB «+ DECINAL 252 ADDRESS)
9464 - 1118 YADDR .EQ $9464 e+ DECINAL 37988 (READ YTABLE)
co54 - 1128 PAGF1 FQ sSC@54
CO55- 1130 PAGE1X .EQ $C@55
93DA- 1145 SCAN EQ $93DA
92F8- A9 00 1150 REVDIR LDA #@ «+ CALL 37624 TO ENTER
92FA- 85 FA 1160 STA BASL e+ POINT TO START OF TABLE
92FC- A5 FD 1178 LDA VB «+« GET BOTTOM Y-COORDINATE
92FE- 85 26 1189 STA YO «+ STORE IN $6 FOR USE BY YADDR
9300- 20 64 94 1199 L1A JSR YACOR e+ RETURNS LO=HBASL/HI=HBASH
9303- A4 FF 1208 LDY HL e+ SET Y-REG TO LEFTMOST BYTE
930@5- 8D 55 CO 1212 L2A STA PAGE1X «+ DRAW AUXILIARY MEMORY
9308- 20 28 93 1214 JSR R «+ ROTATE/DRAW DATA BYTE
930B- 8D 54 CO 1216 STA PAGEL «+ DRAW MAIN MEMORY
930E- 20 28 93 1218 JSR R +«+ ROTATE/DRAW DATA BYTE
9311- C8 1220 INY «s POINT TO NEXT AFFRESS -->
9312- C4 FE 1379 NC2 CPY HR ++ HAVE WE PASSED HR YET?
9314- 90 EF 1380 BCC L2A «+ NO-GET THE NEXT ADDRESS
9316- FO ED 1390 BEQ L2A e+ NO-WE'RE DOING HR NOW
9318- C6 96 1418 DEC YO «s MOVE UP TO NEXT LINE
931A- A5 96 1428 LDA YO e+ GET NEW Y-COORDINATE
931C- C9 FF 1430 CMP #SFF «+ HAS Y-COORDINATE REACHED 07
931E- FO 24 1449 BEQ RTN2 -+ YES-WE'RE FINISHED
9328- C5 FC 14590 CMP VT «+ HAVE WE PASSED VT?
9322- BO DC 1460 BCS L1A s+ NO-START THE NEXT LINE
9324- 20 DA 93 1478 RTN2 JSR SCAN «+ DONE-REVISE BLOCK TABLE
9327- 68 1480 RTS es EXIT ROUTINE
9328- A2 00 13990 R LDX #9 «es SET OFFSET POINTER=8
932A- Al FA 1500 LDA (BASL.X) «+ GET SHAPE BYTE FROM TABLE
932C- C9 7F 1518 CMP #127 «s IS BYTE O1111111 ? ($7F)

MOVE Routines $9283

This collection of routines (Listing §) will
be very handy for use in our animation. Here’s
what each routine does.

EORON §$9283 — If you look at lines 1250
and 1315 of the DRAW and DRAWDN
routines, you will find the instructions EOR
(HBASL),Y. These instructions modify the
shape data byte to the present screen
background before drawing to the screen. This
is very useful for making the DRAW and
DRAWDN routines erase shapes from the
screen. The EOR function is also useful in
moving shapes over the background or over
other shapes, and restoring the bit patterns on
the screen as the shape moves away. The
EORON routine places the EOR (HBASL).Y
instructions in lines 1250 and 1315 of both
DRAW and DRAWDN just as they appear in
Listings 2 and 3.

EOROFF $928D — This routine removes the
EOR (HBASL)Y instructions from DRAW
and DRAWDN, replacing them with NOP (No
OPeration) instructions. In much of your
animation you will not want the EOR instruc-
tions functioning.

MOVERT $92AC — This routine is used with
rightward moving shapes to INCrement the
values of HR and HL.

MOVELF $92B7 — This routine simply
DECrements the values of HR and HL and
is used on leftward moving shapes.

GOUP $92C0 — The GOUP routine
DECrements the values of VT and VB for up-
ward moving shapes.

GODOWN $92C9 — This routine will IN-
Crement the values of VT and VB for
downward moving shapes.

YINCRU $92D4 — To use this routine you
must first POKE into location 227 ($E3) the
number of vertical dots which you want the
shape to move. The routine will then subtract
that value (YINCR) from both VT and VB,
causing the shape to move upward YINCR
screen coordinates.

YINCRD $92E5 — This routine is similar
to YINCRU, except that it adds the value of
YINCR to both VT and VB for downward
moving shapes.)

This collection of routines will make it very
easy for you to manipulate the values of VT,
VB, HR, and HL for moving shapes about the
screen. Note that each of the move routines
includes protectors which will not allow the
values of VT, VB, HR, or HL to exceed the
legal limits of 0-39.

Once you've added all of these new routines
to your driver, save them to disk with the
command:

BSAVE DHR.DRIVER,A$9283,L$37D

Creating a Double Hi-Res Shape
Now that we've got the boring stuff out of
the way, let’s put your Apple to work. Listing
6 is a short program that will create spaceship
shapes and automatically save them to disk.
At this point you should enter the program
and RUN it; then we'll discuss what it does.

92A5- 8D A9 93 1350 STA $93A9

92A8- 8D B8 93 1368 STA $9388
92AB- 69 1378 RTS

92AC- A5 FE 1382 MOVERT LDA HR
92AE- C9 27 1396 CMP #39
928B0- B? 94 149¢ BCS J1

92B2- E6 FE 1418 INC HR

92B4- E6 FF 1428 INC HL

92B6- 69 1430 J1 RTS

92B7- A5 FF 144¢ MOVELF LDA HL
9289- F9 04 1458 BEQ J2

92BB- C6 FE 1468 DEC HR

928BD- C6 FF 14780 DEC HL

92BF- 69 1480 J2 RTS

92C@- A5 FC 149¢ GOUP LDA VT
92C2- Fo 24 1500 BEQ J3

92C4- C6 FC 1518 DEC VT

92C6- C6 FD 152@ DEC VB

92C8- 69 1532 J3 RTS

92C9- A5 FD 1540 GODOWN LDA VB
92CB- C9 BF 15580 CMP #191
92CD- BO 24 1568 BCS J4

92CF- E6 FC 1578 INC VT

92D1- E6 FD 158¢ INC VB

92D3- 69 159@ J4 RTS

92D4- A5 FC 160¢ YINCRU LDA VT
9206- 38 1618 SEC

92D7- ES E3 1628 SBC YINCR
92D09- 39 89 1638 BMI J5

92DB- 85 FC 1640 STA VT

92DD- A5 FD 1658 LDA VB

92DF- 38 166€ SEC

92E@- E5 E3 167@ SBC YINCR
92E2- 85 FD 1688 STA vB

92E4- 60 169@ J5 RTS

92ES5- A5 FD 1708 YINCRD LDA VB
92E7- 18 171¢ CLC

92E8- 65 E3 172@ ADC YINCR
92EA- C9 CO 1738 CMP #192
92EC- BO 09 1740 BCS J6

92EE- 85 FD 1758 STA VB

92FP- A5 FC 176¢ LDA VT

92F2- 18 1776 CLC

92F3- 65 E3 1788 ADC YINCR
92F5- 85 FC 179€ STA VT

92F7- 60 1808 J6 RTS

932E- FP 19 152¢ BEQ J2 «+ YES-NO NEED TO REVERSE
9338- C9 A1 1538 CMP #1 «+ [S BYTE 00000000 ? ($00)
9332- 99 €C 1540 BCC J2 e+ YES-NO NEED TO REVERSE
9334- 86 F9 1558 STX NUBYTE «« SET ALL BITS TO ZERO
9336- 4A 1568 NXTBIT LSR «« PUSH BIT OFF SHAPE BYTE -->
9337- 26 F9 1570 ROL NUBYTE e+ PUT BIT IN REVERSED BYTE x--
9339- EB8 1580 INX «+« BUMP BIT COUNTER
933A- EO 07 1590 CPX #7 «+ HAVE WE DONE BITS 8-67
933C- 92 F8 166@ BCC NXTBIT +«+ NO-GO DO NEXT BIT
933E- A5 F9 1605 LDA NUBYTE «+ LOAD REVERSED BYTE
9340- 91 26 1612 J2 STA (HBASL),Y ¢« LOAD REVERSED BYTE ON SCREEN
9342- E6 FA 1628 INC BASL o+ POINT TO NEXT TABLE ELEMENT
9344- DB 02 1632 BNE J3 s+ IF x256 BYTES-JUMP
9346- E6 FB 1640 INC BASH ++ PAGE OVERFLOW-GOTO NEXT PAGE
9348- 60 1650 J3 RTS o+ FINISHED BYTE ROTATION
LISTING 5: MOVE ROUTINES

2190 « MOVE ROUTINES

0110 «

9120 « COPYRIGHT 1984 BY MICROSPARC, INC

0130 « S-C ASSENBLER

0140 «

18028 .OR $9283

1910 .TF MOVE ROUTINES $9283.0BJ
POFC- 19320 VT .EQ SFC «+ DECIMAL 252
@0FD- 1040 VB .EQ SFD ++ DECIMAL 253
OOFE- 1050 HR .EQ SFE ++ DECIMAL 254
QOFF - 1860 HL .EQ SFF -+ DECIMAL 255
9PE3- 1970 YINCR .EQ SE3 ++ DECIMAL 227
9283- A9 51 1200 EORON LDA #$51 e+ CALL 37507 TO ENTER
9285- 20 92 92 1218 JSR STORE1 e+ INSERT EOR (HBASL) .Y
9288- A9 26 1220 LDA #$26 ++ [N DRAW AND DRAWDN
92BA- 4C 9F 92 1230 JMP STORE2
928D- A9 EA 1250 EOROFF LDA #SEA e+ CALL 37517 TO ENTER
928F- 28 9F 92 12680 JSR STORE2 ++ REMOVE EOR (HBASL),Y FROM DRAW/DRAWDN
9292- 8D 6@ 93 1280 STORE1 STA $9360
9295- 8D 6F 93 1298 STA $936F
9298- 8D A8 93 1300 STA $93A8
929B- 8D B7 93 1318 STA $93B7
929E- 69 13286 RTS
929F. 8D 61 93 1338 STORE2 STA $9361
92A2- 8D 78 93 134@ STA $9370

++ CALL 37548 TO ENTER
«o [NCREMENT HR AND HL
«e DON'T ALLOW HR>39

so CALL 37559 TO ENTER

«+ DECREMENT HR AND HL
ve DON'T ALLOW HLxB

«s CALL 37568 TO ENTER

«+« DECREMENT VT AND VB
«o DON'T ALLOW VTxB

«s CALL 37577 TO ENTER
+= INCREMENT VT AND VB
s+ DON'T ALLOW VB>191

«e CALL 37588 TO ENTER

++ SUBTRACT YINCR
FROM VT AND VB
« DON'T ALLOW VTx@

»e CALL 37605 TO ENTER

++ ADD YINCR
+«+ TO VT AND VB
o DON'T ALLOW VB>191

How SHAPE.MAKER Works

Lines 80-140 should be rather easily
understood, as we worked with the same in-
structions last month.

Lines 150-190 drudgingly go about the
process of drawing our spaceship on the screen
using a series of HPLOT end points that are
defined in the DATA statements. The shape
is drawn exactly as it is defined in Figure 1.
The extra line of empty bytes above and below
the shape are there so that the shape will crase
itself as we move it about the screen.

Line 200 POKEs the value of SHNUM.
(We're going to store the shape at $9000.) Then
it sets the values of VT, VB, HR, and HL.
Finally, it SCANSs the shape into memory. At
this point our Block Shape Table has been
created in memory and is available for us to
use with our drawing routines.

Line 210 saves the Shape Table to disk.

Line 220 changes the values of HR and HL

to another part of the screen and test DRAWs
the shape from the table. If you don't have two
spaceships on the screen now, there is a
problem with either your SCAN or your
DRAW routine.

Line 230 changes HR and HL again to yct
another part of the screen and DRAWDNs the
shape from the table. The third spaceship
which appears on the screen should be drawn
upside-down.

Line 240 changes the shape number
(SHNUM) to 143 ($8F00) and SCANs the
upside-down shape into another Shape Table.
You should note here that since DRAWDN
always draws the shape upside-down from the
way it was SCANned, now that we SCANned
shape #143 upside-down, DRAWDN will now
draw shape #143 in its proper upright position.

Line 250 saves this second Shape Table to
disk.

At this point there are two shapes saved to
disk. Shape #144 will be drawn in its proper
upright position with DRAW, and shape #143
will be drawn in its proper upright position
with DRAWDN.

Line 260 resclects shape #144, moves HR
and HL again, and draws a reversed version
of shape #144. You probably won't notice any
difference in this REVDIRed shape since it’s
symmetrical; however, if the shape looks cor-
rect on the screen, you can be reasonably sure
that REVDIR is working properly.

You should be aware that Shape Table #144
has been modified (in memory only, not on
disk) by the REVDIR routine which
reSCANned the shape. If you look at Figure
1, you'll notice that there are two empty dots
to the right of our shape; when REVDIR did
its thing, it moved those two empty dots to the
left of the shape.

As you can see from this short little pro-
gram, the hardest part was drawing the
original shape on the screen using HPLOTSs.
Once it was on the screen, the SCAN routine
made it quite easy to translate what we'd drawn
into a Block Shape Table.

A Moving Conclusion

Next month we'll show you how to animate
the shapes you've created. You'll learn how
to produce Double Hi-Res movement from
both Applesoft and machine language. Your
/le or /lc will love it.

TABLE 1: SUMMARY OF ADDITIONAL DHR.DRIVER ROUTINES

Routine Name Call Address Hex Address Routine Function

SCAN 37850 $93DA Create a Block Shape Table from the
screen.

DRAW 37780 $9394 Draw a shape from the bottom to the
top.

DRAWDN 37708 $934C Draw a shape from the top to the
bottom.

REVDIR 37624 $92F8 Reverse the shape and create a new
table.

YINCRD 37605 $92ES5 Add YINCR to VT and VB.

YINCRU 37588 $92D4 Subtract YINCR from VT and VB.

GODOWN 37571 $92C9 Add one to VT and VB.

GOUP 37568 $92C0 Subtract one from VT and VB.

MOVELF 37559 $92B7 Subtract one from HR and HL.

MOVERT 37548 $92AC Add one to HR and HL.

EOROFF 37517 $928D Cancel DRAW and DRAWDN EOR
functions.

EORON 37507 $9283 Install DRAW and DRAWDN EOR
functions.

Special POKEs to use with the driver:

POKE 227,YINCR Establishes the value to be used by YINCRU and
YINCRD for modifying VT and VB.

POKE 251,SHNUM Tell SCAN, DRAW, DRAWDN, and REVDIR
where to find the Shape Table.

POKE 252,VT Set the topmost Y-coordinate of the shape.

POKE 253,VB Set the bottommost Y-coordinate of the shape.

POKE 254,HR Set the rightmost address offset of the shape.

POKE 255,HL Set the leftmost address offset of the shape.

Note that there are many other points at which you might choose to enter a driver routine to per-
form special fuctions. If you need to take some action that is not described in the documentation,
look through each listing to see if some other entry point might do the job. There are also many
ways that you could change the functions of a routine with a few simple POKEs. For instance,
the GODOWN and YINCRD routines could be changed to keep you above VB =159 if you were
using the mixed text and graphics mode, or you could enter a few POKEs to cancel the automatic

SCAN function of REVDIR.

LISTING 6: SHAPE.MAKER

168 FOR X = 39 TO 20 STEP - 1: READ Y: READ
Y1: GOSUB 138: HPLOT XC,Y TO XC,Yl: NEXT

18 REM vesesresssenensnsesenne 170 FOR M = 6 TO 3@ STEP 8 FOR X = M TO M +

20 REM . SHAPE . MAKER . 3: READ Y: GOSUB 13@: HPLOT XC,Y TO XC,5

3¢ REM + BY ROBERT R. DEVINE -« © NEXT XM

49 REM « COPYRIGHT (C) 1984 » 180 DATA 5.,6:9,6,5,7:5,7,4,8,4.8,2.9,7:9:7

58 REM +» BY MICROSPARC, INC. » 18:7:19::3.10::3:18:211 20 i 2 X TG

6@ REM = LINCOLN, MA 01773 = A7 1151,12 601012

7¢ REM R 199 DATA 4,4,3,3,2,2,1,1,1,1,2,2,3,3.4,4

8 PRINT CHRS (4)"BLOAD DHR DRIVER": CALL 3 200 POKE 251,144: POKE 252 .@: POKE 253,13: POKE
7999 HIMEM: 37507: REM LOAD/SETUP/PROT 254 ,2: POKE 255,0: CALL 37850: REM SCAN
ECT THE SHIP

98 CALL 37953: REM INIT 218 PRINT CHRS (4)"BSAVE SHAPE-U #144 AS900

100 HGR CALL 37928: REM CLEAR DHR SCREEN @,.84": REM SAVE 'DRAW' SHAPE

1180 POKE 49153,0: POKE 49234 0: REM 8@STORE 220 POKE 254,12: POKE 255,10: CALL 37780: REM
/FULL SCREEN DRAW IT

120 HCOLOR= 3: GOTO 150 230 POKE 254 ,22: POKE 255,20: CALL 37708: REM

130 POKE 49236,0:C = INT (X / 7): IFC/ 2 = DRAWDN IT

INT (C 7 2) THEN POKE 49237 .0: REM FL 240 POKE 251,143. CALL 37850: REM SCAN DRAW

1P PAGE2 DN SHAPE

140 XC = INT (C/ 2) + X / 7 - C:XC = INT (250 PRINT CHRS (4)"BSAVE SHAPE-D #143 A38F0

XC « 7 + .5): RETURN

@,L84": REM SAVE 'DRAWDN' SHAPE

150 FOR X = @ TO 19: READ Y: READ Y1: GOSuUB 268 POKE 251,144: POKE 254,32: POKE 255, 30: CALL

13@: HPLOT XC,Y TO XC,Y1l: NEXT :

RESTORE 37624: REM REVDIR IT

