i
i

Graphics Workshop

pquirm glttack

}Block shape animation lets you move
licker free across the screen, but what if
you want your shape to wriggle as it
moves? SQUIRM ATTACK describes pre-
shifted animation which lets you do [ust

. that,

[by Robert R. Devine
| P.O.Box 10
| Adona, AK 72001

i oy, time really flies when you're hay-
| B ing fun! Here it is — time to get back
| to the fun of making all those great
| little shapes cavort about the Hi-Res
| screen.
‘1 Before we get into this month’s discus-
sion of graphics animation (which | per-
sonally think will be the best yet), let’s take
amoment to review the different types of
animation that we've looked at so far. To
date, we've experimented with many ap-
proaches to animation, each with its own
sirengths and weaknesses.

ANIMATION METHODS TO DATE

1i The most basic form of animation is the
old ERASE-MOVE-DRAW method, and
this is probably the first type that you
experimented with. This works well;
however, you need to keep track of your
shape's old position forthe ERASE, and
you'll usually see quite a bit of flicker
because the shapeis only on the screen
about haif of the time.

To overcome the flicker problem, we
next looked at page flip animation to
prevent the viewer from ever seeing the
shape in its ERASE state. This was a big
improvement, as our shapes now began
to move very smoothly about the screen.
The major problem was that it was
necessary to use both Hi-Res screens,
thus reducing the amount of memory
available for shapes and programs by
8K. While the results were better, our
programs ran slower because it was
necessary to do all our DRAWing opera-
. tions twice, once on each page.

3. By using horizontal bit shifting and ver-
tical byte shifting, we began to develop
routines that not only ran smoothly
without any flicker, but could work
quickly as well, since no ERASE actions
were needed. Using these methods, we

were again able to use only one Hi-Res
page. At this point it seemed as though
we had finally achieved the best possi-
ble animation methods.

Each of the above methods has its own
benefits and you'll probably find that one of
them will solve almost any animation prob-
lem that you encounter. However, they all
have one major weakness.

Methods 1 through 3 only deal with static
shapes, which simply means that while we
may have effective ways of moving our
shapes, the shape itself never changes as
we move it.

So now we come to another problem:
How can we move and animate our shapes
at the same time? An example of this might
be to display a man walking across the
screen while bouncing a ball, or perhaps it
would be nice to have blinking lights on the
spaceship that we're moving around on the
screen. None of the methods that we've
looked at so far provide a viable way to
achieve this type of animation. It is this
type of animation that we'll examine now.

INTRODUCING PRE-SHIFTED
SHAPE ANIMATION
As we've done in the past, we'll work with
some actual examples of the techniques
described; in this case, a preliminary test
routine that | developed for a program I'm
writing, tentatively named SQUIRM
ATTACK. The friendly little creatures that
we'll attempt to bring tolife on your Hi-Res
screen could be described as many things,
including the creators of Mankind itself!!
These creatures are called SQUIRMS
and as their name implies, they love to
squirm about, constantly wiggling their
long tails. Since they are also quite aggres-
sive, their mouths are always opening and
closing, looking for something tasty to nib-
ble on (no pun intended). For your first
look at our shapes, refer to FIGURE 1.
When working with pre-shifted shapes
we will work exclusively with our block
shape DRAW routine. By properly defining
our shapes, it will never be necessary to
worry about ERASEing as we animate
continued on next page

CIRCLE NUMBER 113

January 1984 © NIBBLE Magazine 121

RUNNING THE
DEMONSTRATION PROGRAM

Now let's take this idea, as well as our
SQUIRMS, and see how we might use them
in a working routine. As mentioned earlier,
whatwe'll look at is the preliminary test ofa
routine that will be incorporated into a pro-
gram I'm working on. The finished program
will be all machine code. However, for now
we’'ll use an Applesoft CALLing program to
get things moving along. You could easily
adapt what we’ll work with for your own
purposes by creating a different set of
shapes.

In our test we'll animate 20 shapes on the
screen, causing them to move up, down, or
forward in a constant state of activity,
squirming about. While we won’t move
them diagonally, we will show how this can
be done.

Let's first look at FIGURE 2 to see how
we'll arrange our shapes. There will be three
columns of SQUIRMS with columns 1 and
3 having seven shapes per column, and
column 2 having six shapes.

The VT value for each shape will be
related to a variable that I've called
TOPLMT (TOPLIMIT), with each shape
being 20 dots below the shape directly
above it. The HR and HL values for each
column will be kept track of by variables FR
(FrontRight), FL (FrontLeft), MR (Middle-
Right), ML (MiddleLeft), etc.

We'll also use a variable called X that will
keep track of which SQUIRM we're dealing
with (1-20) so that we can check the status
of each SQUIRM to determine if it has been
destroyed. (We won't actually destroy the
SQUIRMS, but it is a part of what the fin-
ished program will do.)

Let's take a few moments to enter the
Shape Tables (LISTING 1), Applesoft test
program (LISTING 2), and the machine
code file (LISTING 3) which I've called
T5.0BJ. (You can save T5.0BJ with the

command BSAVE T5.0BJ,A$5000,L$F3.)
You will of course need to have your block
shape routines (documented in past col-
umns; a hex dump appears in LISTING 4)
on the same disk. Once entered, let it run
for a bit to see how it works and we’'ll go
through it to look at how the animation is

accomplished.

HOW THE PROGRAM WORKS
Now that you've spent a little time watch-
ing all the activity on the screen, let's see

how it all works, beginning with the Apple-
soft CALLing program

Lines 5-16 should be pretty clear so we
won't bother with them

Line 20 sets all of the bytes in the Squirm
Status Table equal to 1. While we won't
actually use the Status Table in our test,
the machine code routine will check the
table to see if a SQUIRM has been de-
stroyed prior to each DRAW operation. If,
for example, you were to set the fourth
address in the table ($8204) to zero, you
would find that SQUIRM #4 would be elim-
inated from the screen.

Line 30 disables the EOR function of
DRAW which is what you will normally do
when working with pre-shifted shapes.

Line 100 sets SHNUM equal to the high
byte value of the memory page where our
horizontal (pre-shifted) shapes are located
($8000), and clears the Hi-Res screen.

Line 190 POKEs the TOPLMT value into
address 43 ($2B) for use by the machine
code routine. You'll note from FIGURE 2
that our colony of SQUIRMS always begins
with the VT of the topmost row of shapes at
Y = 30.

Line 200 makes the first CALL to the
machine code routine. This CALL sets the
proper starting HR and HL values for each
column, sets the first direction of move-
ment forward, and moves the shapes for-
ward seven dots.

FIGURE 2

\/'@’5 ~2

o|1|2|3|4|sls 9
(STARTING VALUES)
BL | BR FL | FR
ML MR
| l TOPLMT (STARTS AT 30)
~ O~
; TOPLMT + 10
BLOCK SHAPE =5 3 8
4 BYTES
TOPLMT + 20

g(;w:ls. SHAPE : \/@ 9
~—D1e e T B

\/@ lo
‘\/@ 17 \/@ 4

AS THE SCREEN

APPEARS AFTER THE
FIRST 7 FORWARD

SHIFTS, JUST BEFORE

FR, FL, MR, ML, BR, AND BL

ARE INCREMENTED : 18

S
~ADE

~—Dn
"\/‘@'9 *‘\/‘@b

‘\/@’3

~ D

Line 210 selects the random movement of
the shapes as they move about the screen.
To slow down their forward progress (to
keep them on the screen longer), we will
only move forward one-ninth of the time.

Line 300 is the beginning of our MOVE UP
subroutine. First, address 43 ($2B),
TOFLMT is checked to prevent movement
upward past VT=16. If we are already as far
up as we want to go, then a jump to line 322
is made to move downward instead.

Line 302 sets SHNUM for our vertical
movement shapes which begin at $8100.
We haven't talked about these shapes yet,
so let's do so now.

As you look at FIGURE 1, you'll see that
while each of the shapes is the same as its
counterpart horizontal movement shape,
none of these shapes are pre-shifted, and
each shape is only three bytes wide. Since
the shapes simply move up or down, we
don't want them to move forward as we
step through the series. By making them
only three bytes wide, we also make them
execute 25% faster.

The final thing that you should notice
about the shapes is that each has an extra
row of empty bytes above and below the
actual shape bytes. This serves the same
function as the exira rows of byvtes we used
in our vertical SHIFTing routines and takes
care of erasing the old shape as we move.

The way our routine is written, we only
need to POKE SHNUM with the page
number (high byte) where the shapes are
found. By properly arranging the shape
series on each memory page, we can let the

BTMLMT = TOPLMT + 100
(MIDDLE COLUMN)

BTMLMT = TOPLMT + 120
(FRONT/BACK COLUMNS)

~ A7

machine code routine take care of assign-
ing the proper low byte shape address
value.

Line 305 sets the desired direction of
movement and CALLs the machine code
routine, which animates our shapes on the
screen. Address 235 ($EB) is where we
store DPTR (Direction PoinTeR); 0=Move
Right, 1=Move Up, and 2=Move Down.

Lines 310 and 315 work the same as lines
300-305, except that we first GOSUB 400 to
test the present value of FR (Front column,
Rightmost byte) to see if we can still move
forward and stay on the screen. If we've
reached the right edge of the screen, the
two GOSUBs that got us there are can-
celled and we jump to line 100 to begin all
over again.

Lines 320-325 work the same as lines
300-305 by testing how far down we can
go, and setting our vertical movement
shapes and direction of travel.

THE MACHINE CODE ROUTINE T5.0BJ

We won't go through this routine in great
detail, as it's heavily documented. How-
ever, we will hit the important parts so you
can see how one routine can move our
shapes in any of three selected directions.

First, note the way we've arranged our
Shape Tables in memory: in both sets of
shapes, the first shape is located at
$SHNUM(20), with each progressive shape
being $20 bytes higher than the last, and
the last shape in each table being at
$SHNUM(EQ). Therefore, to find the ad-
dress of each succeeding shape, all we
need to do is add $20 to the present shape
low byte.

To determine if we're through all seven
shapes in the series, we simply check to
see if we've reached the shape low byte
$E0. This is how we step through our
shapes. First we POKE 251,SHNUM (high
byte). Then we insert the proper low byte
directly into the second byte, $9300, of the
DRAW routine. Every time we complete a
series of seven shapes, the DRAW routine
is restored to LDA #3$00, so it will wark
properly for other program DRAWing
needs.

The next and probably most important
thing to be aware of is the status of our
shifting bytes when we enter or leave the
routine. There is always an empty shifting
byte ahead of the shape when we call the
routine. If we enter the routine to move
forward with the pre-shifted shapes, all we
need to do is step through the seven

shapes and INCrement FR, FL, MR, ML,
BR, and BL when we leave.

If, however, we are entering to move up
or down, we need to DECrement FR, MR,
and BR before doing any drawing to
remove the shifting bytes (remember, the
vertical shapes are only three byles wide),
and restore the shifting bytes as we leave
the routine.

Vertical shape movement is handled
much the same as in vertical shift anima-
tion. I you'll look at lines 4221-4230, you'll
see that it is here we test DPTR (Direction
PoinTeR) to see where we're going.

If we're moving rightward we just move
to the next shape. However, if we're moving
up or down, we need to DECrement or
INCrement TOPLMT before going on to
the next shape in the series. Every time we
go up one line we must DECrement
TOPLMT, and every time we go down we
must INCrement it. That's really all the dif-
ference there is between moving up and
down!!

e e ——]
“...moving diagonally should

be a breeze.”
P =S S e ==

DIAGONAL MOVEMENT WITH
PRE-SHIFTED SHAPES

We haven't moved any of our shapes
diagonally in this test; but if you under-
stand what we've done so far, then moving
diagonally should be a breeze. Consider
this: If we were to use our set of pre-shifted
shapes in the vertical movement routines,
what would happen?

THAT'S CORRECT!! As you moved your
shape up or down by INCrementing or
DECrementing the shapes VT and VB with
each new shape in the series, you would
also move the shape forward!! Therefore,
moving a pre-shifted shape up or down
results in diagonal movement.

The only reason that you can't do this in
our test routine is that T5.0BJ expects any
vertical movement shape to be one byte
narrower than our horizontal movement
shapes. Removal of lines 3372-3379 and
4240-4242 would allow you to substitute
our pre-shifted shapes into your vertical
movement routines, thus providing for
diagonal movement.

A CLOSING NOTE

| hope that you now have a pretty clear
idea about how to make your shapes move
smoothly and how to animate them as they
move.

See you next month!!

LISTING 1 BLOCK/SQUIRMS-5

18066 . 21 FF
BB~ @0 60 66 @8 B0 60 @7
1888- 3F 7E 7F 7F 78 @4F 47
Ble- 3F 7E PF 7F 7F 7F 3F
18- @7 78 06 90 86 @6 @@
8206~ @0 PO @0 DO 00 18 @@
l628- @86 ac 80 78 @l 7F 47
B38- 88 4C 4C B0 @8 78 38
B35- @8 66 00 00 6O @@ 0@
840- 80 608 @0 6@ @0 70 00
B48- 86 18 78 86 @2 7F 4E
856- 81 18 83 38 @1 70 081
BSe- @0 06 @0 @6 @6 @0 @@
B40- 00 80 @0 B0 03 &1 70
B4E- @O 33 18 @8 @87 7E @C
878~ @2 30 04 30 83 &0 B3
B768- @0 @0 00 Q0 B8 A0 @0
880- 60 @@ @9 @0 B7 41 &0
B88- 81 &3 30 @0 @F 7E 1C
8%8- B4 40 @7 40 97 48 9@
B98- @0 60 @0 6@ 06 00 Ao
0A0- 80 B0 B0 B0 OF 08 BE
BAB- 67 48 1B @@ IF 7C 71
8B6- 9% 47 40 80 OF @8 0P
8BE- 6@ @0 G0 A0 06 80 A0
8CO- B8 09 00 00 1E @9 1E
8C8- 1F @@ 33 @0 3F 70 &1
6D8- 13 19 46 8@ IE OF @@
BDE- 60 060 66 @B B8 B0 Q@
9E@- 08 PO @0 8P M4 @B 38
BEB- 04 8@ &C 88 7F 42 47
8F6- 24 34 88 8@ 3C IC @6
8FE- 06 00 00 00 60 @@ B8e
180- 86 @0 98 8@ 00 0B @@
1868~ 86 00 00 06 @0 B¢ @Q
118~ 66 00 00 90 00 GG @O
118- 8@ @6 8@ 80 06 @6 Ap
126- 86 60 @0 OC 90 0@ B4
128- 3C 7F &3 &7 26 34 @@
138- 1C 8@ @8 8O 90 0@ 00
138- 96 00 60 00 60 0G A6
140- @0 20 @8 1C 80 00 B¢
148- 868 7F 73 47 24 @8 &C
{56~ @8 38 66 P@ 86 0@ 9@
1S8- @6 60 @6 06 90 BB 8O
160- 88 80 @0 3C 1E 88 0&
168- 86 7F &1 42 246 88 &6
176- @0 3C 80 00 @R 00 @0
178- 88 00 @@ @8 808 00 8@
180- @0 @@ @0 3C @E 8@ BE
188- 88 7F 71 &7 24 @@ 3C
198- @0 90 80 00 @0 9@ @@
18- 80 60 00 68 00 A0 90
1AB- @6 @0 88 3C @0 38 1E
IAB- 4C 7F 73 47 26 1E 80
IBe- 00 @0 00 0@ 00 80 @A
IB8- 60 00 88 60 6@ @@ 88
ICo- 8@ @9 @@ 3C @8 3C 3E
IC8- 44 7F &1 43 24 33 @a
IDB- 1E @9 09 06 60 8@ 09
ID8- @6 86 80 00 @8 86 A
IEe- 0@ 88 00 04 80 38 84
IEB- &C 7F &3 47 26 34 @@
IFB- IC 6@ 00 00 @@ 88 B0
IFE- @@ @0 @0 0@ 0o 60 86

5833~ 18 3458 CLC
LISTING 2 — T5 TEST 5834- 4% 8C 3440 ADC #1409 * ADD OFFSET
1 REM 22X XXXXEXXANFXXEIEXLEXS S8346- 85 67 3470 STA BTMLMT * SET BOTTOMLIMIT
2 REM = TS TEST * 5838- AS 2B 3480 LDA TOPLMT * GET TOPLIMIT
* S83A- 85 19 3498 STA LOOP #* SET UT POINTER
z :En * Cg;Yz?gi1R'T(gEvi';EB3 : Se3C- 85 FC 3508 Ji STA UT # SET CURRENT UT
S REM * BY MICROSPARC, INC * il .
4 REM % LINCOLN. Ma 61773 & S03F- 49 84 3526 ADC Hé * ADD OFFSET
¢ " 5041 - 8S FD 35380 STA UB * SET VB
7 REM SXXEXREXXEFARXEXFEREEER 5043- A 22 3540 DX X # GET SQUIRM POINTER
8 TEXT : HOME S845- BD @8 82 3558 LDA STATUS,X * IS SQUIRM DEAD?
? VUTAB 12: PRINT "** COPYRIGHT 1983 BY MICROSPARC, I 5848- Fe @3 3560 BEQ J49 » YES-ABORT DRAW
NC. ==" S64A- 20 2F 93 3578 Z1 JSR DRAW * DRAW SQUIRM
18 PRINT CHR$ (4)"BLOAD BLOCK ROUTINES $98AA": CALL 504D~ E& 22 3580 J4 INC X * NEXT SQUIRM
37799 584F- AS 19 3598 LDA LOOP * GET UT FOINTER
1S5 PRINT CHR$ (4)"BLOAD BLOCK/SQUIRMS-S" ggglz- 163 » gi?g 2'6% . % OIS DEESET
16 PRINT CHR$ (4)"BLOAD TS.0BJ" B t
= . . . S5854- 85 19 3628 STA LOOP * RESET UT POINTER
280 FOR X = 33288 TO 3'_3311. POKE X,1: NEXT : REM Set S854- C5 87 3638 CMP BTMLMT % COLUMN DONE ?
Squirm status pointers at $8200 B cc J1 * ND-NEXT SQUIRM
380 POKE 376946,234: POKE 37497,234: REM C 1 DRAW mhoe- 78 Ee sase =
’ ’ ance 5054- AS IC 3458 L2306 LDA MR * GET MIDDLE HR
EOR function 585C- 85 FE 3468 STA HR % STORE IT
1880 POKE 251,128: HOME : HGR :X = PEEK (49234) S@SE- AS IE 3478 LDA ML % GET MIDDLE HL
190 POKE 43,30: REM Set TOPLMT (Columns 1 and 3 be 58408~ 85 FF 3488 STA HL # STORE IT
gin at Y=38) S862- AS 2B 3698 LDA TOPLMT * GET TOPLIMIT
268 CALL 204886: REM DRAW Squirms at starting posit Seé4- 18 3768 CLC
ions S845- 4% 78 3718 ADC #120 » ADD OFFSET
218 ON (INT ¢ RND ¢(1) * 9) + 1) GOSUB 360,206,300,3 S5867- 85 67 3720 STA BTMLMT * SET BOTTOMLiMIT
00,310,320,320,320,320: REM UP,RIGHT ,DOWN S849- AS 28 3738 LDA TOPLMT » GET TOPLIMIT
el LR L gg:g— l689 8A ;;gg gb% #ie * ADD OFFSET
3@ IF PEEK (43) < = 16 THEN 322: REM Test TOPLMT SpiE— @5 19 3768 STA LOOP * SET UT POINTER
for moving up Se78- 85 FC 3778 J2 STA VT % SET CURRENT VT
362 POKE 251,129: REM Set NON-Shifted shapes 5072- 18 3780 CLC
385 POKE 235,1: CALL 20562: RETURN : REM Move up 5873- 49 86 37980 ADC #é * ADD OFFSET
318 GOSUB 408: POKE 251,128: REM Set Shifted shapes 5075~ &5 FD 3808 STA UB * SET UB
5877~ Aé 22 3818 LDX X ¥ GET SQUIRM POINTER
315 POKE 235,8: CALL 28582: RETURN : REM Move right S5e79- BD 8@ BZ 3828 LDA STATUS,X = 1S IT DEAD ?
==y S87C- F@a 83 3838 BEQ JS * YES-ABORT DRAW
320 IF PEEK (43> > = 44 THEN 382: REM Test TOPLMT gggf" é‘i g; 93 33‘5‘: 32 ﬁﬁ SRAN * S'é‘;‘;) 233112:
for moving down - g o 4 .
322 POKE 251,129: REM Set NON-Shifted shapes cae= 18~ 5= me »BET VT ROINTER
325 POKE 235,2: CALL 20562: RETURN : REM Move down S884—- &9 14 geég ADC 420 * ADD OFFSET
468 IF PEEK (26) > = 39 THEN POP : POP : GOTO 1080 5888- 85 19 3898 STA LOOP # SET NEXT UT
: REM At right edge of screen—-start over aqain 588A- CS 87 3900 CMP BTMLMT * COLUMN DONE ?
485 RETURN 588C- 98 E2 3916 BCC J2 * NO-NEXT SQUIRM
SB8E- AS D& 3920 L248 LDA BR * GET BACK HR
LISTING 3 T5.0BJ S898- 85 FE 3938 STA HR * STORE IT
1ASM 5892- AS D7 3940 LDA BL * GET BACK HL
1666 .OR %5000 5e94- 85 FF 3958 STA HL * STORE IT
1018 .TF T5.0BJ 5094- AS 2B 3948 LDA TOPLMT #* GET TOPLIMIT
P32F - 1820 DRAW .EQ $932F Se%8- 18 3978 CLC
$330- 1830 SHPLO .EQ $9330 5099~ &9 8C 3980 ADC H140 * ADD OFFSET
BO1A- 1840 FR .EQ $1A S5898- 85 €7 3998 STA BTMLMT * SET BOTTOMLIMIT
901B- 1850 FL .EQ %1B 589D0- AS 2B 4000 LDA TOPLMT # GET TOPLIMIT
9081C- 1848 MR .EQ $1C SePF- 85 19 4010 STA LOOP * SET UT POINTER
BB1E- 16786 ML .EQ $1E S50A1- 85 FC 4020 J3 STA VT * SET CURRENT UT
08D4- 1888 BR .EQ $Dé S8A3- 18 4838 CLC
88D7- 1098 BL .EQ $D7 S08a4- 49 64 4048 ADC Hé * ADD OFFSET
88FB-) SeA&- 85 FD 4pse STA UB * SET UB
88FC- ;?:g’ S-FNL_?Q EgcsFB 50A8~ Aé 22 4868 LDX X * GET SQUIRM POINTER
@8FD- 1110 UB .EQ ¢FD SeAA- BD 68 82 4878 LDA STATUS,X # 1S IT DEAD ?
@OFE- 1128 HR .EQ $FE S8AD- FB 83 4888 BEQ Jé& * YES-ABORT DRAW
@OFF - 1130 HL .EQ $FF SeAF- 20 2F 93 4098 23 JSR DRAW * DRAW SQUIRM
0019 1140 LOO'; EQ $19 S8B2- E& 22 4188 J& INC X * NEXT SQUIRM
. 58B4- AS 19 4118 LDA LOOP * GET UT POINTER
0028" 1168 TOPLHT .EQ $2B 5986- 18 4120 CLC
eee7- 1178 BTMLMT .EQ $87 S8B7- 49 14 4138 ADC #20 * ADD OFFSET
8280 - 1188 STATUS .EQ #8298 S58B%Y- 85 19 4140 STA LOOP # SET NEXT VUT
0022- 1190 X .EQ $22 56e8B- CS @7 4156 CMP BTMLMT * COLUMN DONE ?
BBEB- 1268 DPTR .EQ $EB S0BD- 9?8 E2 4168 BCC J3 * NO-NEXT SQUIRM
5000- A9 89 3000 START LDA #9 ¥ FIRST DRAW ENTRY SBBF- AD 38 93 4170 L2500 LDA SHPLO % GET SHAPE POINTER
S082- 85 1A 3018 STA FR sec2- C9 Ee 4180 CMP HSED * DONE SHAPE 7 ?
5004- AP 094 3828 LDA #& * SET ALL 58C4- FO 17 4199 BEQ L2480 * YES-WE’RE DONE
Seasé- 85 1B 3838 STA FL 58C4- 18 4280 CLC
S5888- 85 1C 3048 STA MR * STARTING S8C7- 49 28 4218 ADC #3208 * SET NEXT SHAPE
S588A- A9 83 3856 LDA #3 S8C®- 8D 38 93 4220 S5TA SHPLO * STORE IT
568C- 85 1E 3048 STA ML * HR’S AND HL’S SeCC- AS EB 4221 LDA DPTR * MOVING --> ?
S88E- 8S Dé 38786 STA BR S8CE- F8 8A 4222 BEQG J8 * YES~-JUMP
Sel1e- AY 08 3080 LDA #0 % FOR SQUIRMS se0e- C9 at 4223 CMP #1 x MOVING UP 2
Sei12- 85 D7 30698 STA BL 5eD2- D8 €4 4224 BNE J? * NO-JUMP
Se14- 85 EB 3188 STA DPTR * SET DIRECTION --> SeDp4- Cé 2B 4225 DEC TOPLMT * MOVE ALL UP 1 LINE
S81é6- A% 20 3340 L286S LDA H$28 *x NORMAL DRAW S58Dé- D8 02 4226 BNE J8 * JUMP
Se18- 8D 30 93 3378 STA SHPLO #* SET STARTING SHAPE S58D8- E& 2B 4227 J9 INC TOPLMT % MOVE ALL DOWN 1 LINE
581B- A4 EB 3372 LDY DPTR * MOVING --> ? SeDA- 4C 25 S8 4238 J8 JMP L2280 * AGAIN WITH NEXT SHAPE
581D~ FB8 B8é 3374 BEQ L2208 * YES-JUMP SeDD- AS EB 4240 L2406 LDA DPTR * GET DIRECTION POINTER
SeiF- Cé 1A 3376 DEC FR » REMOVE THE SeDF- D8 04 4242 BNE J10 * IF UP OR DOWN-JUMP
5021- Cé 1C 3378 DEC MR * SHIFTING SeE1- E& 1B 4245 INC FL * MOVE ALL HL’S
S823- Cé D& 3379 DEC BR * BYTES. S0E3- Eé IE 4250 INC ML # RIGHTWARD
5825- A2 o1 3388 L2280 LDX #1 #* POINT TO SeES- Eé D7 4268 INC BL * | BYTE
5827- 84 22 3398 STX X * FIRST SQUIRM. - S8E7- Eé 1A 4270 J1@ INC FR #* MOVE ALL HR’S
5829- AS 1A 3400 LDA FR % GET ITS HR SBEP- E& IC 4288 INC MR * RIGHTWARD
582B- 85 FE 3418 STA HR * STORE IT S@EB- Eé Dé 4298 INC BR * | BYTE
582D~ AS 1B 3420 LDA FL #* GET ITS HL SEED- AP 08 4300 LDA He * RESTORE DRAW
S582F- 85 FF 34386 STA HL * STORE 1IT SeEF- 8D 30 93 4318 STA SHPLO * TO LDA H$0
S831- AS 2B 3440 LDA TOPLMT * FIND TOPLIMIT S8F2- 46 4328 RTS * SHAPE MOVED 7 DOTS

*P0AA .
F8RA-
70BB -
7888~
fece-
f0C8-
P800 -
9808~
90EQ -
P8EB-
FOF0 -
F8F8-
?106-
P18~
?110-
?118-
?120-
?128-
f138-
9138~
?140-
?148-
?158-
%158~
P140~
148~
?178-
?178-
9180
9188~
7198
9198-
P1R0-
P1AB-
f1E0-
9188~
91C0-
?1C8-
9100~
9108~
P1EB-
PIEB-
?1F8-~
?1F8~-
92088-
9288-
9210~
9218~
9228 -
9228~
9238-
9238~
?2498-
9248~
9250~
?258-
9248-
9248~
9270-
9278~
9280~
9288~
9290
9298-
92A8-
P2AB-
92808~
?2B8-
92Ce-
P2C8-
208~
9208~
P2E0-
92E8-
92F0 -
92F8-
2380
9308~
9316~
9318~
9320
9328~
9330-
9338~
9340 -

AS
85
24
21

FF
aé
FC
AS
85
26
1

FF
86
FD
FC
8F
49
c8
o1

9E
28
21

20
91

8A
20
ES
e8
8F
F8
FF
FE
FF
Eé
86
08
82
82
26
29
e7
26

LISTING 4
BLOCK ROUTINES $90AA

7484

FD
as
85
24
Fa
AS
B3
FC
8s
85
24
Fa
AS
L
48
48
8s
AP
18
72
QE
AS
22
20
?1
8A
40
20
40
20
ce
AS
cé
FF
2e
as
Eé
E¢4
a9
7F
AT
89
as
C¢
CcS
8é
88
Pt
ce
AS
?1
80
18
Cé
cs
ES
E3
E3
85
A%
28
28
?3
20
?3
2F
A%
2F
20
ce
28
92
FA
A4
Fe
aA
an
24
c4
AS
Be
85
93
26

s
28
F9
20
04
1)
D7
ce
28
F9
20
04
XY
D7
A
A
Eé
28
78
20
92
Eé
21

BS
20
91

As
AC
Aé
97
82
FF
FE
ES
91

82
88
89
8@
&A
oy
80
AS
86
FC
280
85
26
80
a8
26
91

AS
06
FC
E3
8s
8s
FD
48
oF
SE
48
8s
28
93
a8
93
2F
A9
2F
20
AS
FF
1S
26
AS
cs
FE
aé
c3
FA
A4
21

BD
?1
20
DS
c4q
cy
E&
a1
91
20
84
C4q
cy
Cé
8E
=1’)
48
85
83
2E
28
ce
18
?1
BS
AS
FB
?1
FB
?1
e
ce
48
FE
93
85
B1
AS
4qc
?1
cy
?1
ez
AS
B8
?1
88
BO
B@
D8
4ac
26
:34
AS
B@
85
FD
FC
40
85
z2e
92
AP
ES
SE
&0
85
20
?3
20
°3
2F
FD
A2
ce
F9
F®
Eé
90
ce
20
AS
FE
26

B
$3
04
Fa
FF
FF
FC
o0
93
DS
FS
FF
BE
FD
As
8D
As
33
20
72
13
a8
50
20
21
Eé
DE
AS
DE
18
8E
01
23
60
18
0o
26
08
E2
26
81
26
ce
84
AC
93
85
€2
82
8s
44
ca
c9
86
BS
FC
48
18
A%
23
éD
28
e
28
92
A9
E&
&D
60
85
28
93
85
ee
o1
E8
98
Fa
D&
FF
61
FD
Az
8s

2F
A4
FS
CE]
B0
Fe
[
33
A4
F4
88
B
Fo
cé
FB
54
20
&8
2C
29
92
Fo
83
8B5S
28
c?
&F
o
bF
]
cé
99
FF
AS
A4
8s
c?
Fe
91
98
29
c4
el
co
48
18
89
78
98
B1
92
FE
a1
co
&8
38
18
AsS
88
AS
92
SE
8D
40
28
88
2e
92
Ay
Eé
4D
40
)
Al
98
E@
82
De
F8
Fo
93
85
88
18

9348~
9350~
9358~
9340~
?348-
9370
9378~
9388-
?388-
9390~
9398~
$3MB -
93A8-
9380 -
9388~
93C0~
93C8-
93p8 -
$3D8~
93E@-
93E8-
P3FR-
93F8-
9480
9488~
P410-
9418~
9420~
9428~
9430~
9438~
9448~
9498~
9450~
9458-
9460~
9468~
9470
9478~
9488
9488~
2490
498~
94m8~-
94A8-
9480
94B8-
94Cc0-
P4C8-
94D8 -
94Dp8-
94EB-
94EB-
F4FQ -
94Fg-
osea-
9588-
9510~
9518~
9520
9528~
9538~
9538
9548 -
9548
9550 -
9558~
9560
9568~
9570 -
9578~
9588
9588~
9590~
9598~
9500 -
95A8-
9588 -
9588~
95C08~
958~
?500~
9508~
95E@~
9SES-
9SFE-
95F8-

9488

Eé

Fa
09
71

81

E4
E@
Fo
es
48
Bl

CE
EE
DE
48
48
49
499

aa
48
4B
48
48
Lid
49
an

4B

48
48
49
49

4B
4B

88
ae
88
ee
80
-1}
89
28
A8
28
A8
28
A8
28
A8
se
De

De
Se
De
Se
De
28
28

2%

2R
2B
2B
28
28
29
29

2B
2B
28
28
29
29

2A
2B
2B
22

FF

FC
AS
FE
18
FF
0s
FC
8s
B1
27
8s
as
85
54
54

55
Sé
Sé
57
57
54
549
55
S5
Sé
S5é
57
57
54
549
5SS
55
Sé
56
57
57
ee
8e

8@
L]
88
a8
8e
28
A8
28
A8
28
AB
28
A8
s5e
L)
58
De
50
De
5@
pe
34
34
35
35
36
34
37
37

34
35

36
36
37
37
34
34
35
35
34
36
37
37
2E

AB

