THE APPLE SCREEN

Getting Started With
Subroutines

by Dan Ravey
127 Chukker Ct
San Mateo, CA 94403

If you've written even a few sizable pro-
grams, you probably already know how use-
ful subroutines are. If you don't know, I'll bet
your programs are overly long and complex
And if you're a beginner, well, just take my
word for it!

The trouble is, many of us tend to create
subroutines rather casually, assigning them
line numbers that “seem right at the time,”
and we frequently use different constructs
from one program to the next to accomplish
the same results.

In this series of articles we will develop a
method of building alibrary of standard sub-
routines with consistent line numbering and
variables naming. The subroutines in the ser-
ies will represent a substantial collection of
fairly dramatic Screen Display controls to
add professional zip to your programs.

Each subroutine will be saved as a Text File
on diskette, so that in order to include any
subroutinein your program, you may simply
EXEC that file. This will insert the subroutine
into your program — without the need for
typingin all the subroutinelines. You can see
right away that we must exercise some disci-
pline about line numbering. Otherwise, we
might replace existing lines of our program,
or a previously inserted subroutine; or the
inserted subroutine could end up in the
middle of our program, even if it didn't
replace lines with the same line numbers.

PLANNING SUBROUTINES

For reasonably short programs, or if speed
of execution is unimportant, the placement of
subroutines may be arbitrary, and perhaps
the easiest plan is to assign line numbers
much higher than we expect to use in our
main program. But notice what the Applesoft
Interpreter has to do when it encounters a
GOSUB (or a GOTO, for that matter): after
saving its current position. it goes back to the
beginning of the program (normally, 2048,
decimal) and chains its way up from the
beginning of one line to the next, checking
the linenumber each time, until itreaches the
line number specified in the GOSUB
or GOTO! So, if we place our subroutines
early in the program, fewer lines will have to
be checked to find the desired line.

We can't begin the program with a subrou-
tine, of course, or it would execute whenever
we RUN the program, (then “bomb out”when
itfinds the RETURN without there having first
been a GOSUB). What we need to do is to
jump over the subroutines with an uncondi-
tional GOTO, just before the subroutines.

THE GAME PLAN

Considering all of the above, here is the
"Game Plan” | came up with: | use line
numbers under 100 for program |.D. REM
statements, and any one-time initialization,
such as DIMensioning arrays, defining Func-
tions and constants, D$ = CHR$(4), etc. Line
99 contains a *"GOTO 199" statement, and 199
is a "REM"” statement. Then my main pro-
grams begin at 200 or higher. This leaves the
line numbers 100 through 198 for subrou-
tines. Any other systematic approach will
yield equally good results. The main thing is
consistency.

Once you have adopted a numbering
scheme such as the above, the next step in
building a subroutine library is to locate or
write the subroutines you think you will have
occasion to use, and look closely at the
Applesoft code for each. You will be looking
for two things: (1) the way each subroutine is
line numbered; and (2) the names ofthe input
and output variables.

HANDLING LINES

With respect to the line numbering, you will
want your library to be expandable, so you
should use as few line numbers per subrou-
tine as possible. This means packing multiple
statements per line number (being careful,
however, of Applesoft IF statements, which
skip the rest of the line if the argument is not
true). Then, of course, you will wantto assign
the line numbers in the series you have
chosen (100-198, in my case). If you have
“PLE" or some other program editing capabil-
ity, the job will be much easier.

STANDARD NAMES

| also recommend you try to standardize on
the names of your input and output variables,
to facilitate the use of the subroutines. You
might always use “V” for a Real Value, and
“8$" for a string, for example. Again, any let-
ter will do, but BE CONSISTENT. Try to
select names that you usually don't use else-
where in your normal course of programming
(such as X or N or AS).

CAPTURING SUBROUTINES

Okay, now, how do you put your subrou-
tines into Text Files? You can use the “Cap-
ture” program in the DOS manual, but you'll
have to rename each file from “LISTING" to
whatever you want to call it. So, let's embel-
lish“Capture” abit, to make it handier for this
purpose.

Listing 1 shows a mocification that | call
CAPT SUBR. The way this variation works is
that it is really TWO programs disguised as
one! When you RUN this, instructions are
printed atthe top of your screen. Then, inline
6, the command necessary luRUN the second
part of the program (the one that actually
captures the subroutine) is printed on the
screen atline 11. Program line 8 then directs
Applesoft to LIST line 20 on the screen at
screen line 9. Yes, | know it says “VTAB 8",
but the LIST command always prints a car-
riage return first, to insure that it starts on a
fresh line.

So then we print “020" on the screen atline
9 — wait a minute! That's wherethe listing for
line 20 goes! Yes, but we want the cursar to
end up in a position where we can use the
right arrow key to copy the listing of program
line 20 — that’s what the final YTAB 8 does.
just before ENDing the program. But the
Applesoft prompt symbol blots out the first
character of the line number, SO — | had to
“phoney” inthe 20", beginning in column 2.
(You're right — the first character doesn’t
have to be a 0", it can be anything at all.)

Okay, the first part of the program ends at
the end of line 8, and the blinking cursor is
right on the “2” of the listed line 20. If we use
the right arrow to copy through “20 LIST",
then key in the line numbers that we want to
capture in a Text File, then press RETURN,
line20 (inthe second part of the program) will
be changed accordingly. Also, through
CLEVER placement of the other printed line,
the cursor will now be positioned so that you
can copy through the command to run the
rest of the program, beginning at line 10.

A DIGRESSION

Line 10, by the way, illustrates a more fool-
proof way of defining the DOS “waker-upper”
(otherwise known as Control-D) than you
may have seen used. To digress a moment:
have you ever written a program that used
Control-D DOS commands, and they wouldn't
work, even though all the syntax looked cor-
rect? Try this:

10 D$ = CHR$(4)

20 PRINT “PRESS ANY KEY...";
30 GETAS

40 PRINT DS;"CATALOG”

50 END

Thatlooks okay — but it won't work! Instead
of cataloging your disk, it just prints
“"CATALOG" on the screen! How come?
There are two culprits, either of which pre-
vents DOS from recognizing the Control-D,
which MUST be in the first column of a line.
Thesemicolon atthe end of the line 20 PRINT
statement AND/OR the line 30 GET state-
ment force the D$ of line 40 out of first place,
asa PRINTed character. A sure-fire cureis to
always define D$ as a Carriage Return (ASCII
13) PLUS a Control-D (ASCII-4). The car-
riage return insures that Control-D will always
be at the head of the "line". Change line 10,
above, to be the same as line 10 in Listing 1,
and — VOILA! It works!

BACK TO CAPTURE

Returning now to our Capture program, we
prompt for the name to give to the Text File,
then OPEN and enable WRITE to that file.
Line 18 sets the text window so that extra
spaces are not inserted in lines of over 40
characters. If you don't understand that, read
about the text window in your Applesoft
manual. Line 20 now contains whatever you
input in the first part of the program, so the
program now “LISTs" the subroutine, line
numbers and all. But, since you enabled the
DOS “WRITE", the lines are LISTed, not to
the screen, but to your Text File. Finally, we
CLOSE the file, return the text window to
normal and signify completion.

Obviously, to be useful, we must have the
subroutine lines in memory before we RUN

this. So, the sequence for using this Capture
program (once it has been entered, checked
and SAVEd to disk) would be:

1. LOAD CAPT SUBR

2. Enter lines of subroutine code, num-
bered somewhere in the 100 to 198 range
(or your own choice)

3. RUN

4. Follow Instructions to Run the second
part

5. Repeat 2 through 4 as often as needed

The next part in this series will present a
number of subroutines you may want to have
inyour library, to EXEC into your programs.
Butto get you started, Listing 2is theroutine |
assigned to line numbers 100-101, because it
isused so frequently: “Press Any Key To Con-
tinue.” As | do with all my Text File subrou-
tines, | include the famous “99 GOTO 199"
and “199 REM" lines, just to be sure that |
don’t forget to put them in my program.

My version of “Press Any Key" prints the
prompt in inverse video on the bottom line of
the screen, but if you don’'t want that, it is
structured so that you may simply “"GOSUB
101" instead of “"GOSUB 100." If you are not
familiar with the WAIT statement in line 101,
look it up in your Applesoft manual. It's a
useful statement thathas been overlooked by
many programmers.

The Text File names should be planned out,
too. | indicate the subroutine line number in
my file names, as well as ahint toits function.
Thus, | have files named“SR100-PRESSKEY",
“SR102-Y/N?", “SR110-CENTERPRINT",
"SR113-BILLBOARD", “SR125-$ FORMAT",
“SR140-FRACTIONS FORMAT", to name just
a few that will appear in Parts 2 and 3 of this
article.

JLIST

1 REM 3 CAPTURE SUBROUTINE % BY
DON RAVEY: COPYRIGHT (C)
1982 BY MICRO-SPARC, INC.
LINCOLN, MA. 01773

2 TEXT 3 HOME : INVERSE : PRINT
" TO CAPTURE A SUBROUTINE IN
A TEXT FILE,": NORMAL

4 PRINT "USING THE RIGHT ARROW K
EY, COPY OVER THELINE NUMBER
AND "LIST”, THEN ENTER THE"
: PRINT “BEGINNING AND ENDIN
6 LINE NUMBERS OF THESUBROUT

INE, <CR>, THEN COPY OVER
THE": PRINT ""RUN 10’ COMMAN
D, <CR>:"

& VUTAB 11: PRINT "IRUN 10"

8 VTAB 8: LIST 20: VTAB 9: PRINT
“020": VTAB B: END

10 D$ = CHR$ (13) + CHR$ (4)
12 TEXT : HOME : INPUT "ENTER FI
LE NAME: "3;FIs$: PRINT : PRINT

“DO NOT INTERRUPT WHILE WRIT
ING FILE'"

14 PRINT D$; “OPEN";FI$

16 PRINT D$;"WRITE";FI$

18 POKE 33,30

20 LIST XXX, XXX

22 PRINT D$; "CLOSE";FI$

24 TEXT 1 PRINT " DONE.": END
26 REM

]

JLIST

99 6GOTO 199: REM

11 SUBROUTINES

100 VTAB 231 INVERSE : PRINT *
PRESS ANY KEY TO CONTINUE..
. "1 NORMAL

101 WAIT - 146384,128,1: POKE -
16368, 0: RETURN

199 REM 1: MAIN PROGRAM ::

