MODULAR

ASSEMBLY LANGUAGE
PROGRAMMING

APPLE TUTORIAL

With today’s assemblers,
it takes only a few simple rules to develop a library of
independent, relocatable subroutines.

ack in 1977 when the Apple II computer first appeared,

programmers had very limited tools with which to work.

The only resident assembler that was available for the
Apple was the mini-assembler in the Integer BASIC ROM. The
mini-assembler did little more than translate 6502 mnemonics into
their corresponding hexadecimal opcodes. Consequently, most of
the programs that were written with it were fairly short and simple,
especially by today's standards. But then, the original Apple II's
only had 16K of RAM, anyway.

A few years later, better assemblers for the Apple II started to
appear. One of the first of these was EDASM, a combined text
editor/assembler program produced by Apple Computer, Inc., and
available as part of their Programmer's Workbench. * Now it was
possible 1o write assembly language code that utilized labels and
comments. In addition, statements could be easily inserted and
deleted anywhere in the program — another feature that was miss-
ing in the old Apple II's mini-assembler. In principle, there seemed
to be almost no limit to the size of the programs that could now
be written, given enough memory.

PROBLEMS WITH BIG PROGRAMS

As programs became bigger and bigger, several problems, which
had been less noticeable in smaller programs, became evident. For
one thing, the sheer bulk of a long program made it a nuisance to
work with. Anytime a change was needed, no matter how trivial,
the entire assembly language source file had to be loaded, resaved
and reassembled.

*EDASM and its linking loader are also avastable as part of The P.A C.K. (Programimer’s Assembly
Language Construction Kit), published by Interactive Ants, 27135 Porter St., Soquel, CA 93073,
(408) 4757047

Another problem in dealing with very long assembly language
programs was trying to remember which label names had already
been used and which ones hadn't. One way to resolve this problem
might have been to use a set of meaningless labels (such as X1,
X2, X3, etc.) and record them on a separate piece of paper. But
it is better programming practice to assign labels whose names are
meaningful (like START, LOOP or EXIT, for example). However,
once such a label is assigned, it can never be used again anywhere
else in the program.

SUBDIVIDING BIG PROGRAMS

Onc approach to writing a big program was to subdivide the
source file into several scparate source files. These smaller sec-
tions of code were easier to handle, and each could be assembled
separately. However, any time one of the sections had to be modi-
fied, all of the other sections that followed it had to be reassem-
bled to a slightly different memory location to make room for the
changes. The reassembly caused all of the entry points to change.
So every piece of code that accessed those entry points had to be
updated and reassembled, too.

One solution was to leave a cushion of unused memory behind
each section of code so that if changes were needed, there would
be room for expansion. But in a microcomputer, where memory
resources are limited, such solutions were hardly elegant. (Besides,

) The examples
require an assembler that can generate relocatable object mod-
ules (e.g., EDASM, Apple ProDOS Assembler, Merlin Pro and
ORCA/M) and an appropriate linking loader. The resulting pro-
grams run under either DOS 3.3 or ProDOS.

Murphy's Law dictates that no matter how big a cushion you leave,
you will always end up needing at least one byte more.

Subdividing a big program seems to suffer from two separate
(but related) problems:

1. The resulting object files contain position-dependent code. This
means that each section of code can execute properly only if
it is loaded at the memary location that was specified when the
source file was assembled.

2. Even if each section of code could be written so that it would
execute properly anywhere in memory, there would still be the
problem of getting the scparate sections to **find™* one another.

Both of these problems are resolved by writing relocatable assem-
bly language code.

ABSOLUTE VS. RELOCATABLE

Most good assemblers allow the programmer to select whether
the resulting object code will be absolute (position-
dependent) or relocatable.

Absolute code (the predominant type in most software for the
Apple) has the advantage that it is easy 10 load into memory. Since
it's simply a binary file, it can be loaded and/or executed by issu-
ing a single command (i.c.. you can simply BLOAD the file).

Relocatable code has the advantage that it can be loaded into
almost any area of memory and still execute properly. In addition,
relocatable code contains all of the information necessary to allow
other separate, relocatable modules to find each other in memory
and connect themselves together. However, this process of load-
ing, relocating and connecting requires the aid of a separate utility
program called a linking loader.

MODULAR PROGRAMMING

You now have an effective means of writing a big program: you
merely write it as a set of small relocatable modules, and then use
the linking loader to *‘glue’’ the modules together. But just how
do you subdivide any given program? Do you simply write out the
entire program as one long source listing, and then arbitrarily chop
it up into pieces?

The concept of subdivision should not be interpreted as merely
a physical grouping of code, but as a logical division of the overall
task. For example, suppose you wanted to write a program that
plays chess. Would you write one big program that starts out by
inputting your move and ends by printing out the computer’s move?
You might be able to design the program to work that way. But
it would make a lot more sense to design it as a collection of smaller,
simpler subroutines, each of which focuses on a separate aspect
of the chess game. These subroutines could then be combined
together to form a chess-playing program. The subroutines (mod-
ules) that could constitute such a chess-playing program might
include:

* An input/output module for specifying moves

* A module to evaluate the status of the board

* A module to determine the allowable moves for each of the chess
pieces

* A module to display the board on the TV screen

and so on, as needed.
The advantages of creating a program from a set of separate mod-
ules (as opposed to creating one long program) are:

1. Each module can be designed and written separately.

2. Each module can be debugged separately.

3. Modules can be used more than once in the program, when simi-
lar tasks are performed.

4. A modular program is easy to understand and maintain,

There are no hard-and-fast rules when it comes to deciding just
how to partition a programming problem into subroutines. Some-

times the problem has fairly obvious dividing lines and common
sense indicates using separate subroutines. But there is always more
than one way of slicing baloney, and the partitioning you decide
upon today may not scem all that logical tomorrow.

The problem of partitioning is really a recursive one, since each
subroutine also represents a little program in its own right. This
suggests the divide and conquer approach to partitioning: if a subrou-
tine is too long or o complicated, subpartition it further into smaller
and simpler subroutines.

But be careful! Partitioning a program too much can result in
a lot of nearly trivial modules. This means slower execution speed,
since it takes a minimum of 12 microseconds just to enter and exit
a subroutine. Carried to a ridiculous extreme, partitioning could
lead to a set of modules, cach containing only one 6502 instruc-
tion! These “*'modules’* are already available — they 're the entire
instruction set of the 6502.

SUBROUTINE CALLING PARAMETERS

A subroutine is a module of code that is separate from another
body of code. Program control flows into the subroutine via a JSR
instruction, and flows back out of the subroutine via an RTS
instruction.

Sometimes information (data) must flow into and out of the sub-
routine as well. When information must be passed between a subrou-
tine and another body of code, it is passed using calling parameters.
A calling parameter can be passed to and from a subroutine by put-
ting the parameter:

Method 1: into a memory location inside the subroutine itself.
Method 2: into a memory location outside of the subroutine.
Method 3: into onc of the 6502's registers.

(It is also possible to use the 6502°s hardware stack for passing
parameters. But since the stack is located at memory locations
$0100-SO1FF, this method of passing parameters can be regarded
as an extension of method 2 above.)

WRITING RELOCATABLE MODULES

Writing relocatable code is generally not very different from writ-
ing absolute code. In order to generate relocatable object code, you
merely need to specify some additional pseudo-ops (assembler direc-
tives) at the beginning of your source code. Pseudo-ops are slightly
different for each of the assemblers currently available for the Apple
11, but the fundamental concepts are the same. We can get an idea
of how they are implemented by looking at the pseudo-ops used
by EDASM.

PSEUDO-OPS FOR RELOCATABLE CODE
EDASM provides three pseudo-ops for use in writing relocat-
able code: REL, ENTRY and EXTRN.

REL

To produce relocatable object code, the source code must include
a REL pseudo-op as the first instruction of the listing. (Normally,
this REL pseudo-op alone would have sufficed to generate relocat-
able object code, But, because of a minor design flaw in the EDASM
assembler, it is necessary to follow the REL pseudo-op with an ORG
$1000 pseudo-op.)

ENTRY and EXTRN

Whenever a name (symbol) is referenced in the operand field (the
third column) of a source listing. that same name must be defined
somewhere ¢lse in the program or an error message will result.
Usually, the name is defined by making it a label of another instruc-
tion in the same module of code. For example, if a program con-
tains the instruction:

JMP CONT INUE

the name CONTINUE usually appears as a label somewhere in the
same source listing.

When partitioning a program into relocatable modules, it is often
necessary for instructions in each of the separate modules to be able
to reference some of the labels contained in the other modules. Such
labels are termed *‘global symbols.™ Labels that are referenced only
from the current module, and not from any of the other listings,
are termed *‘local symbols.™’

EDASM provides two pseudo-ops, ENTRY and EXTRN, for
dealing with global symbols. The EXTRN pseudo-op is used to
declare labels that are referenced in the current module but are de-
fined in another module. The ENTRY pseudo-op is used to declare
labels that are defined in the current listing, and can be externally
referenced from other listings. Any label not specifically declared
with an ENTRY pseudo-op (i.e.. a global label) defaults to being
local.

Relocatable modules can be thought of as ““little black boxes'”
with sockets leading into them and cables coming out of them. Each
socket is analogous to an ENTRY, and each cable and plug is analo-
gous to an EXTRN (see Figure 1).

FIGURE 1: Subroutines As Boxes With Matched Cables and
Receptacles

/)

FIGURE 2: Connecting Subroutines

(4]

Each cable can be plugged into one, and only one, matching socket
in some other black box. Plugging the cables into their correspond-
ing sockets is analogous to linking the modules together (see Figure
2).

Notice that not all of the sockets need to have cables plugged
into them, but every cable must be able to find its corresponding
socket. In other words, any name may be declared to be an ENTRY,
even if that name never gets referenced from any other subroutine,
But if a name is declared to be an EXTRN, that name must be de-
fined as an ENTRY in some other module. Notice also that every
socket must be unique {two different modules cannot both have the
same ENTRY name), but that any socket can accommodate more
than one cable — as long as the plug on the cable matches the socket.

It is important to understand that any label can be a global sym-
bol if it's simply declared to be an ENTRY. ENTRYS are not limited
to merely specifying entry points to sections of code; an ENTRY
can also refer to the start of a block of data.

A RELOCATABLE MAIN PROGRAM
AND SUBROUTINE

Let's look at a relocatable subroutine that has onc calling param-
eter (see Example 1). This subroutine emits a brief tone from the
Apple’s built-in speaker. (For convenience, the listing includes the
relative line numbers as they would appear in the EDASM text
editor.)

Notice that the SOUND subroutine uses method 2 (a memory
location outside of the subroutine) for passing its calling parameter,
PERIOD: in line 7 of Example 1, the parameter is arbitrarily
assigned to memory location $S0300. (The bigger the number in
PERIOD, the lower the frequency of the sound.)

EXAMPLE 1: Cooperative Subroutine

1 REL

2 ORG $1000
3 *

4 ENTRY SOUND
5 =

6 CLOCK EQU $06

7 PERIOD EQU $0300
8 SPKR EQU $Ce30
g9 =

1@ SOUND LDA #310
11 STA CLOCK
12 LOOP LOY PERIOD
13 WAIT NOP

14 NOP

15 DEY

16 BNE WAIT
17 STA SPKR
18 DEC CLOCK
19 BNE LOOP
20 RTS

EXAMPLE 2: Main Program for Use With Cooperative Subroutine

1 REL

2 ORG $1000
3 -

4 « THE "MOANING APPLE"
5 «

6 EXTRN SOUND
7 e

8 PARAM EQU $0300
9 DATA EQU $F800
19 «

11 LDA #3580
12 STA PARAM
13 LDX #3500
14 LOOP LDA DATA X
15 AND #$20
16 BEQ DECR
17 INCR INC PARAM
18 INC PARAM
19 BEQ INCR
20 JMP TOSUB
21 DECR DEC PARAM
22 DEC PARAM
23 BEQ DECR
24 TOSUB JSR SOUND
25 INX
26 JMP LOOP

Now, let’s look at a main program that might call the SOUND
subroutine (see Example 2). Since the subroutine’s ENTRY name
is SOUND, the main program declares the name SOUND to be
an EXTRN (in line 6). This allows the name SOUND to be refer-
enced (in line 24), even though it is not defined anywhere in the
listing.

Both the main program and the subroutine use LOOP as the name
of a label in their respective source listings. Since the label LOOP
was not declared to be a global symbol, there is no conflict.

INDEPENDENT SUBROUTINES

In the previous example, we wrote a main program that called
a cooperative subroutine. The term *‘cooperative’” means that the
main program and its subroutine were cach written with the other
in mind. For example, both were written with the idea that the call-
ing parameter would be passed via memory location $0300. Fur-
thermore, neither the Y-Register nor the zero-page location $0006
were used by the main program, so the subroutine could use them
freely.

When writing an independent subroutine, you cannot assume that
there will be such cooperation between your routine and all of the
other routines. There is no way to know which index registers or
memory locations will be available for use when a subroutine is
called. The index registers and any absolute memory locations (such
as 50006 and $0300 in the previous example) may already be in

EXAMPLE 3: Independent Subroutine

1 REL

2 ORG $1000
3=

4 ENTRY SOUND
5 s

6 CLOCK EQU $06

7 SPKR EQU $CO30
8 .

9 PERIOD DS 1

16 -«

11 SOUND TXA

12 PHA

13 LDA CLOCK
14 PHA

15 LDA #3510
16 STA CLOCK
17 LOOP LDX PERIOD
18 WAIT NOP

19 NOP
20 DEX
21 BNE WAIT
22 STA SPKR
23 DEC CLOCK
24 BNE LOOP
25 PLA
26 STA CLOCK
27 PLA

28 TAX

29 RTS

use by some other routine. This problem is especially acute in the
case of the zero page memory locations (S0000-$00FF), since most
of them have already becn claimed by the System Monitor or
BASIC. Therefore, when you write an independent subroutine, you
must be careful not to *‘step on the toes’" of any other software
that may also be in use. There are few hard-and-fast rules describ-
ing how 1o write independent subroutines, but the important point
to remember is that mo cooperation can be assumed.

To illustrate one approach to writing independent subroutines,
let’s rewrite the MOANING APPLE example. First, the SOUND
subroutine becomes the listing shown in Example 3. The main pro-
gram that calls this subroutine looks like Example 4.

There are several important differences between Example 1 (the
cooperative subroutine) and Example 3 (the independent subrou-
tine). First, notice that memory location $0006 and the X-Register
must both be saved somewhere (such as on the stack) before they
can be used (sce lines 11-14 of Example 3) because they may cur-
rently be used by the calling program. When the subroutine is

finished with them, they are restored to their previous states. (No-
tice that we no longer need to use the Y-Register.)

Another difference between Example 1 and Example 3 is the
method by which the calling parameter is passed. Instead of assign-
ing the calling parameter to an absolute memory location outside
of the subroutine (method 2), we make it relocatable with the subrou-
tine by assigning it to the memory location immediately preceding
the subroutine’s ENTRY point (method 1). By incorporating the
parameter into the subroutine, we guarantee that no memory con-
flicts will occur with any other routines.

Notice that a subroutine can use a local symbol (PERIOD) to inter-
nally reference its own calling parameter (as in line 17 of Example
3). The calling program, on the other hand, must externally refer-
ence it by using a negative offset from the subroutine’s ENTRY
name (e.g., SOUND-1 in lines 11, 16, 17, 20 and 21 of Example
4).

EXAMPLE 4: Main Program for Use With Independent Subroutine

1 REL

2 ORG $1000

3 =

4 « THE "MOANING APPLE"
5 -

6 EXTRN SOUND

7 =

8 DATA EQU $F800
9 2>

10 LDA #3580

11 STA SOUND- 1
12 LDX #3060

13 LOOP LDA DATA . X
14 AND #5820

15 BEQ DECR

16 INCR INC SOUND-1
17 INC SOUND- 1
18 BEQ INCR

19 JMP TosusB
20 DECR DEC SOUND- 1
21 DEC SOUND-1
22 BEQ DECR
23 TOosuB JSR SOUND
24 INX
25 JMP LOOP

When there is more than one calling parameter. each additional
parameter is referenced again with its appropriate negative offset
from the ENTRY name. For example, if the SOUND subroutine
had scveral calling parameters instead of only one, then the calling
program could reference the second parameter as SOUND-2, the
third as SOUND-3, and so on. (An alternative to this negative off-
set method of accessing calling parameters would be to assign each
calling parameter its own ENTRY name. However, such an
approach quickly uses up all of the **good’* names, and makes the
linking loader’s symbol tables needlessly long. And the longer the
symbol tables are, the slower the linking loader runs.)

DEFAULT VALUES FOR CALLING PARAMETERS

Another advantage to using method 1 for passing calling param-
eters is that it allows default values to be easily assigned. Often,
a subroutine will have a calling parameter that is almost always
assigned one particular value, It makes sense that this most
frequently-used value should be supplied as a default instead of re-
quiring the user to specify it each time. By assigning a default valuc,
the user can, in effect, ignore the parameter most of the time. How-
ever, since it is still a calling parameter, it can be accessed for those
rare applications that require a different value.

CALLING INDEPENDENT SUBROUTINES
FROM BASIC

Independent subroutines can pass calling parameters either by
using internal locations (method 1) or by using 6502 registers
(method 3). On the other hand, to call an assembly language subrou-
tine from BASIC (where the parameters are passed using PEEKs
and POKEs), only method | or method 2 (using & memory loca-
tion outside the routine) can be used. Therefore, in order to write
subroutines that are both independent and callable from BASIC,
method | 1s the recommended way of passing all calling parameters,

THE POWER OF INDEPENDENT SUBROUTINES

By writing relocatable, independent modules, it is possible to cre-
atc libraries of your most frequently-used subroutines. Once they
arc debugged and working, you can incorporate these modules into
future programs without having ro ever modify for even look at)
their source codes again!

The implications are far-reaching. Perhaps the most exciting one
is that it is now possible for a programmer to share his or her subrou-
tines with other programmers.

Consider the following scenario: You have just received the latest
issues of your two favorite computer magazines. In one is an article
describing how to plot ASCII characters on the double Hi-Res screen
(included is a listing of the subroutine that does the character plot-
ting). In the sccond magazine, you find an article (and subroutine
listing) describing how to draw lines on the double Hi-Res screen.
You decide that you would like to write a program that draws and
labels bar graphs.

But hold everything! — there’s a fly in the ointment. Both authors
have placed their subroutines at $9000. **No problem,'” you say.
“T'll just re-ORG one of them to $8000."" So you reassemble the
code and finish writing your own main program. When you try
to run the whole thing, though, it still doesn’t work right. After
hours of debugging, you finally discover that the two published
subroutines use the same memory location on page zero.

Had the two authors in the above scenario published their code
as cooperative subroutines, the problems would never have
occurred.

SUBROUTINE LIBRARIES

Most computer users will tell you that they have their own per-
sonal software libraries. By this, they usually mean that they have
a pile of floppy disks lying around that contain different programs
for their computer,

While such program libraries do not require any formal organi-
zation, subroutine libraries do. A subroutine library is an organized
structure whose primary purpose is to provide a simple and effec-
tive way of storing and loading commonly-used modules. Most link-
ing loaders have built-in provisions for handling subroutine libraries,
but cach handles them in a slightly different way.

EDASM Subroutine Libraries

A subroutine library is similar to a public library in that both
represent a storehouse of information. A public library contains
collections of books and magazines; a subroutine library contains
collections of subroutines and data tables.

A public library has a card catalog (directory) showing where
cach book and magazine can be found. Similarly, a subroutine
library (as implemented by the EDASM linking loader) contains
adirectory (a text file) that lists the names of all the ENTRY's (sub-
routines and data tables) contained in the library. For cach ENTRY
the directory gives the name of the relocatable file in which the
ENTRY can be found.

Because the EDASM linking loader is interactive, there is no limit
to the number of libraries you can have. In fact, it is possible for
the same subroutine 1o be stored in several different subroutine
libraries, just as the same book can be found in many public libraries.

Since a subroutine library’s directory is simply a text file that
indicates to the linking loader where it can find the object files that

it nceds, you may be tempted to think that a directory is nothing
more than the equivalent of an EXEC file for loading. This is defi-
nitely not the case. An EXEC file would load in everything, even
ENTRYSs that are never used.

Invoking a library, on the other hand, loads in only those mod-
ules that are actually nceded. The linking loader scans the speci-
fied directory file and, as each ENTRY name is encountered. the
linking loader compares it to EXTRNS referenced by the program.
If it finds a match (and if no other module defining that ENTRY
is already in memory), the file containing the ENTRY is loaded.

CONCLUSION

A computer program is a closed system of code. . .a little universe
of its own in which its creator has provided everything needed for
standalone operation (such as user-friendly 1/O. and error handling).
But programs are extremely limited in their flexibility — all you
can do with a program is run it! If a purchased program lacks some
desired feature, or if it doesn’t work quite the way you'd like it
to, you simply have to live with the problem.

A subroutine can also be a closed system of code (i.e.. a black
box that performs a well-defined task). but the scope of its universe
is usually much smaller than that of a program. A subroutine gener-
ally cannot stand alone as a main program because it lacks sup-
port: it is essentially an “‘incomplete program.’’ But it is this
incompleteness that gives subroutines their tremendous flexibility.

.. programming in assembly language
could become almost as easy and fun
as programming in BASIC.

They are analogous to electronic components (amplifiers, logic
gates, etc.) which, by themselves, are relatively powerless. But by
combining them with other components, there's almost no limit to
the powerful and unique new products that do-it-yourselfers can
create.

While there are many fully-assembled programs available as com-
mercial products, there are virtually no subroutine modules that
software do-it-yourselfers can buy. (Stores like Radio Shack sup-
ply hardware components but there are, as yet, no Subroutine Shacks
for supplying software components.)

Prefabricated software modules would be particularly useful to
beginning programmers, who may understand BASIC but who don’t
yet feel quite at home in the strange new world of assembly lan-
guage programming.

One of the advantages of programming in Applesoft BASIC is
that prefabricated modules (HGR, HPLOT, RND, SQR, etc.) are
built into the language. Even a beginning BASIC programmer can
quickly and casily access these modules to achieve interesting
results.

Programming in assembly language, on the other hand, tends to
be a laborious task. Each linc of code does little in comparison to
what can be done ina single line of @ BASIC program. Worse yet,
assembly language has none of the built-in modules of BASIC. To
create an assembly language program that produces even a slightly
interesting effect requires not only an inordinate amount of work.
but also a fairly thorough understanding of the computer’s hard-
ware architecture.

Onc of the primary goals of this article was to suggest a standard
programming methodology by which even beginning programmers
could casily develop software — without first having to understand
all of the hardware idiosyncrasies of their computer and its periph-
erals. By providing prefabricated independent modules that handle
such fundamental operations as Hi-Res plotting or line drawing,
programming in assembly language could become almost as easy
and fun as programming in BASIC.

Acknowledgment: 1 would like to thank Lucia Grossberger for her

~

helpful contributions and support. &

